Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Гилберт С. Биология развития. Т.2.doc ,БИР.doc
Скачиваний:
516
Добавлен:
23.02.2015
Размер:
19.98 Mб
Скачать

Гилберт с. Биология развития: в 3-х т. Т. 2: Пер. С англ. – м.: Мир, 1994. – 235 с.

140_______________ ГЛАВА 12______________________________________________________________________

Рис. 12.3. Присоединение кэп-группы к 5-концу мРНК эукариот. А. Исходный 5'-конец. Б. 5'-кэп. Показано добавление к мРНК 7-метилгуанозина в направлении 5'  5'. Во многих мРНК наблюдается также метилирование 2-гидроксильных групп первых двух оснований. (По Rottman et al., 1974.)

Рис. 12.4. Обнаружение интронов при картировании с вытеснением петли (R-петли). Ген ß-цепи глобина мыши смешивают в формамиде с собственной мРНК. Присутствие формамида обеспечивает предпочтительную РНК – ДНК-гибридизацию, а не гибридизацию ДНК – ДНК. При замещении РНК гомологичной цепи ДНК вытесненная ДНК образует одноцепочечную R-петлю. При этом интрону, находящемуся между двумя кодирующими последовательностями, энергетически выгодно образовать двухцепочечную петлю. А. Схема, иллюстрирующая принцип картирования с R-петлей. Б. Электронная микрофотография, иллюстрирующая взаимодействие ß-глобинового гена мыши и мРНК этого гена. В сопроводительной схеме сплошными жирными линиями обозначена ДНК, а тонкой штриховой линией – ß-глобиновая мРНК. (Фотография из Tiemeier et al., 1978.)

Гилберт с. Биология развития: в 3-х т. Т. 2: Пер. С англ. – м.: Мир, 1994. – 235 с.

__________ МЕХАНИЗМЫ ДИФФЕРЕНЦИАЛЬНОЙ ТРАНСКРИПЦИИ ГЕНОВ_________________________ 141

тельностью гена. Обе модификации, 5'- и 3'-концов, могут защищать РНК от экзонуклеаз (Sheiness, Darnell, 1973; Gedamu, Dixon, 1978), стабилизируя таким образом мРНК и ее предшественник. Эти поли(А)хвосты прогрессивно укорачиваются по мере старения мРНК. Новообразованная глобиновая мРНК в клетках мыши и кролика имеет около 150 адениловых остатков, тогда как старые РНК – 100, 60 или 40 аденилатов (Merkel et al., 1975; Nokin et al., 1976). Показано, что глобиновая мРНК, лишенная поли(А), быстро разрушается после инъекции ее в ооциты Xenopus. Глобиновая мРНК с поли(А)хвостом существует в этих условиях более 20 ч (Marbaix et al., 1975).

Наличие интронов между кодирующими областями было выявлено с помощью электронного микроскопа (рис. 12.4). Информационная РНК ß-цепи глобина связывается со специфическими участками ядерного гена, выпячивая интроны. Имеются разного рода данные, что эти интроны необходимы для того, чтобы последовательности мРНК покинули ядро и попали в цитоплазму, где они могут быть транслированы в белки. Во-первых, можно сконструировать искусственные вирусы так, что в них будет встроена часть глобинового гена. Затем этим вирусам дают возможность инфицировать клетки и транскрибировать РНК в ядрах Если вирус содержит интрон (из глобинового гена или из вирусного гена), то в цитоплазме обнаруживаются стабильные последовательности глобиновой мРНК. Однако если интрон вируса или глобинового гена отсутствует, то последовательности глобиновой мРНК в цитоплазме не накапливаются (Hamer, Leder, 1979).

Во-вторых, как уже было отмечено ранее, некоторые индивидуумы страдают от болезни, называемой β+-талассемией; это заболевание характеризуется недостаточной продукцией ß-цепей глобина. У больных имеются гены для ß-цепей глобина, и транскрипция предшественников мРНК на этих генах проходит, по-видимому, нормально. Более того, мРНК этих больных правильно транслируется в аминокислотную последовательность ß-цепи глобина человека. Дело заключается в количестве ß-глобиновой мРНК. Следовательно, заболевание проявляется на уровне процессинга РНК. Это было показано с помощью пульсового мечения («pulsechase») (Maquat et al., 1980). Развивающиеся эритроциты, выделенные из костного мозга больных, в течение 12 мин инкубировали с радиоактивными нуклеотидами («pulse»). Затем транскрипцию останавливали актиномицином D. Через различные интервалы времени («chase») из клеток выделяли РНК, которую подвергали электрофорезу для разделения молекул РНК по размерам, и затем гибридизовали эти РНК с ß-глобиновой кДНК. У нормальных индивидуумов вскоре после мечения появляется РНК длиной 1900 оснований. Несколько позже кДНК связывается с молекулами РНК, содержащими 1550, 1150, 960 и 880 оснований. Еще несколькими минутами позже 85% всей РНК представляет собой мРНК. В клетках от больных ß+-талассемией наблюдается переизбыток промежуточных продуктов. Очень незначительная часть этих РНК имеет к 30 минутам размеры зрелой мРНК. Образовавшиеся промежуточные продукты разрушаются, вероятно, в ядре, и лишь немногие выходят в цитоплазму (Maquat el al., 1980; Kantor et al., 1980). Таким образом, β+-талассемия обусловлена дефектом в процессинге предшественника ß-глобиновой мРНК. В результате секвенирования ß-глобиновых генов нескольких больных было обнаружено, что они содержат мутации в первом интроне. Мутация в одном из этих генов показана на рис. 12.1 (Spritz et al., 1981). Итак, структура интрона оказывается существенной для процессинга и транспорта РНК из ядра в цитоплазму. Механизм такого сплайсинга и его значение для дифференциальной экспрессии генов будут обсуждаться в гл. 13.