Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Гилберт С. Биология развития. Т.2.doc ,БИР.doc
Скачиваний:
516
Добавлен:
23.02.2015
Размер:
19.98 Mб
Скачать

Гилберт с. Биология развития: в 3-х т. Т. 2: Пер. С англ. – м.: Мир, 1994. – 235 с.

Рис 8.9. Развитие· плутеуса из наружных и промежуточных клеток 32-клеточного зародыша морского ежа. А. К слою мезомеров (Ан1 + Ан2) добавлены микромеры. Б. Слой Ан2 с добавлением макромеров (будущие слои Вег1 и Вег2), но без двух крайних слоев (Ан1 и микромеры). В обоих случаях образуются плутеусы. Каждый рисунок в нижнем ряду представляет собой гипотетический градиент. (По Czihak, 1971.)

Рис. 8.10. А. Микромеры, взятые из области вегетативного полюса (обозначены черным), пересажены в область между анимальной и вегетативной половиной 32 клеточного зародыша. Б. Микромеры инвагинируют в бластоцель. В. Формируется вторичный архентерон и в конечном счете плутеус (Г), имеющий два архентерона. Д. Эти два отдельных архентерона позже сливаются в одну большую кишку. (По Hörstadius, I935.)

Гилберт с. Биология развития: в 3-х т. Т. 2: Пер. С англ. – м.: Мир, 1994. – 235 с.

__________________ ПРОГРЕССИВНАЯ ДЕТЕРМИНАЦИЯ______________________________________________________ 49

мальные клетки, рекомбинированные с сильным источником вегетативного фактора, будут формировать ткань кишки. Если зародыш разделен таким образом, что каждая половина содержит полный анимальный и вегетативный градиенты (т.е. разделение произведено по меридиану, проходящему вдоль анимально-вегетативной оси), то формируется полная личинка. Бластомеры остаются способными к регуляции до тех пор, пока не будут формироваться исключительно из анимальной или вегетативной цитоплазмы. Поэтому неудивителен тот факт, что после 32-клсточной стадии большая часть бластомеров по отдельности более не может дать начало целой личинке (Morgan. 1895), а микромеры с 16-клеточной стадии уже неспособны к этому (Hagstrom. Lonning, 1965: Okazaki. 1975). Даже для зародыша, развитие которого является регуляционным, наступает время, когда потенции его клеток становятся ограниченными.

Ганс Шпеман: прогрессивная детерминация эмбриональных клеток

В предыдущем разделе главы были приведены данные о регуляционном типе развития. Мы отметили два главных аспекта регуляции: 1) потенция изолированных бластомеров в эмбриогенезе шире, чем их нормальная судьба, и 2) бластомеры. перемещенные в другую область зародыша, развиваются согласно их новому положению. Оба этих явления характерны для ранних стадий дробления морского ежа. Однако впоследствии бластомеры морского ежа становятся коммитированными к их различным проспективным значениям. Гёрстадиусу удалось связать ограничение потенций с ориентацией плоскости делений дробления, поскольку бластомеры могли регулировать развитие лишь до тех пор, пока они имели достаточно материала как из анимальной, так и из вегетативной частей яйца. В 1918 г. Ганс Шпеман (H. Spemann) из Фрайбургского университета обнаружил, что сходная ситуация наблюдается и в яйце тритона. Опыты, с помощью которых он и его коллеги анализировали это явление в течение более чем 20 лет. заложили основу большей части наших знаний о физиологии развития и обусловили присуждение Шпеману Нобелевской премии в 1935 г.

Шпеман, подобно Ру и Дришу, решил проверить гипотезу Вейсмана и с помощью остроумной методики доказал, что ядра ранних бластомеров тритона идентичны, т. е. каждое из них способно обеспечить развитие целой личинки. Пользуясь волоском ребенка в качестве лигатуры, он перевязывал им яйцо тритона вскоре после оплодотворения в плоскости первого деления дробления. Затем он несколько стягивал петлю так, что все деления ядер происходили лишь в одной из половин. Наконец на стадии 16 бластомеров одно ядро смогло проскользнуть через перетяжку в безъядерную половину. Дробление начиналось и в этой половине, а петлю, накинутую на яйцо. Шпеман стягивал все сильнее, пока не разделял яйцо на две изолированные половины. В результате развивались два зародыша-близнеца, причем один был немного старше другого (рис. 8.11). Результаты этого опыта позволили Шпеману сделать вывод, что ядра ранних зародышей амфибий идентичны и каждое способно обеспечить развитие целого организма. В этом отношении бластомеры амфибий были сходны с бластомерами морских ежей.

Однако, когда Шпеман проделал сходный опыт с перетягиванием яйца также лонгитудинально, но перпендикулярно к плоскости первого деления дробления (т.е. разделял яйцо не на левую и правую половины, а на будущую спинную и брюшную стороны), он получил совершенно другой результат! По обе стороны от лигатуры ядра продолжали делиться, но лишь из клеток одной стороны образовалась нормальная личинка. Из другой половины возникала только неорганизованная масса ткани, названная Шпеманом Bauchstück «кусок живота». Эта масса тканей представляла собой шарик эпидермальных клеток (эктодерма), содержащий внутри кровь и мезенхиму (мезодерма) и клетки кишки (энтодерма), но в нем не было дорсальных структур, таких, как нервная система, хорда или сомиты (рис. 8.12).

Почему описанные выше два опыта дали разные результаты? Не могло ли это быть вызвано тем, что при первом делении яйца, когда плоскость деления проходила перпендикулярно к нормальной плоскости первого деления дробления, некоторые цитоплазматические вещества неравномерно распределялись по двум половинам? К счастью, яйцо тритона оказалось очень удобным для получения ответа на этот вопрос. Как уже говорилось в гл. 2 и 4, в яйцах амфибий после оплодотворения происходит резкое смещение кортикального слоя цитоплазмы и у некоторых видов амфибий такое движение приводит к образованию серого серпа в области, прямо противоположной месту проникновения спермия в яйцо. Кроме того, плоскость первого деления дробления обычно делит эту область поровну между двумя бластомерами. из которых, если их отделить друг от друга, развиваются две нормальные личинки. Однако, если плоскость первого деления отклоняется от середины серого серпа (в редких случаях спонтанно или в опыте, в котором исследователь перетягивает яйцо волосяной петлей перпендикулярно плоскости нормального деления), то материал