Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УЧЕБНИК по НГ.doc
Скачиваний:
22
Добавлен:
11.11.2019
Размер:
7.51 Mб
Скачать

2.4. Взаимное пересечение многогранников

Линия пересечения многогранников (линия перехода) в общем случае является пространственной ломаной линией. В некоторых случаях она может распадаться на несколько отдельных частей, которые могут быть и плоскими многоугольниками.

Вершинами этой ломаной линии являются точки пересечения ребер первого многогранника с гранями второго, а также ребер второго многогранника с гранями первого. Сторонами линии пересечения являются отрезки прямых, по которым пересекаются грани обоих многогранников.

Поэтому построение линии пересечения многогранников сводится к многократному решению задачи на пересечение прямой с плоскостью, а построение сторон этой линии сводится к многократному решению задачи на пересечение плоскостей. Обычно находят вершины линии пересечения, а стороны определяют соединением соответствующих вершин. Ясно, что соединять отрезками прямых можно только те пары вершин, которые лежат в одной и той же грани первого многогранника и в то же время в одной и той же грани второго многогранника. Если же рассматриваемая пара вершин хотя бы в одном многограннике принадлежит разным граням, такие вершины не соединяются.

Порядок соединения вершин линии пересечения определяется проще, если выяснен вопрос с видимостью ребер многогранников. При этом для каждого ребра, на котором есть вершины линии пересечения, отмечена видимость до и после его пересечения с другим многогранником. Видимыми будут только те видимые ребра каждого многогранника, которые пересекаются с видимыми гранями другого многогранника.

При соединении вершин линии пересечения необходимо учитывать видимость ее звеньев. Видимыми будут те звенья, которые принадлежат одновременно видимым граням обоих многогранников.

Логично, что проекции линии пересечения могут располагаться только в пределах площади наложения проекций многогранников. Поэтому если хотя бы на одном виде (проекции) ребро находится вне площади наложения, то это ребро не пересекается с другим многогранником.

Следовательно: построение вершин линии пересечения двух многогранников сводится к проведению на поверхности каждого многогранника вспомогательных ломаных линий, конкурирующих с ребрами другого многогранника, и определению точек пересечения этих вспомогательных линий с соответствующими ребрами. Построение сторон линии пересечения сводится к последовательному соединению отрезками прямых тех пар вершин, которые лежат в одной и той же грани каждого из данных многогранников.

Рассмотрим примеры построения линии пересечения многогранников.

П ример 1. Построить линию пересечения треугольной пирамиды SABC и треугольной призмы DD1EE1FF1 (рисунок 49).

Найдем сначала точки пересечения ребер пирамиды с гранями призмы. Ребра основания АВС пирамиды располагаются вне площади наложения и призму не пересекают. Поэтому будем искать точки пересечения ребер SA, SB, SC с гранями призмы. Для каждого из этих ребер строим на поверхности призмы вспомогательные фронтально конкурирующие линии, эти линии образуют треугольники. Так на рисунке 49а линия, фронтально конкурирующая с ребром SA, образует треугольник 1-2-3. В пересечении ребра SA со сторонами 1-2 и 1-3 треугольника 1-2-3 находим точки К и L пересечения ребра SA с поверхностью призмы.

Аналогично находим точки M, N и P, J пересечения ребер SB и SC с поверхностью призмы. Чтобы не загромождать чертеж линиями, сами построения не приведены.

Определим видимость ребер. Сначала рассмотрим ребро SA. Так как это ребро пересекается в точке К с гранью DD1EE1, а в точке L с гранью EE1FF1 и обе эти грани видимы на виде сверху (на горизонтальной проекции), то ребро SA будет видимым здесь на отрезках SK и LA. На виде спереди (на фронтальной проекции) грань DD1EE1 видима, а грань EE1FF1 невидима, поэтому здесь ребро SA будет видимым на отрезке SK и на отрезке от точки, конкурирующей с точкой 3 до точки А. Видимость ребер SB и SC определяем аналогично.

Теперь определим точки пересечения ребер призмы с гранями пирамиды. Ребра обоих оснований призмы не пересекают поверхности пирамиды, поскольку их проекции расположены вне площади наложения. Следовательно, остается определить точки пересечения ребер EE1, DD1 и FF1 призмы с поверхностью пирамиды. Проведя на поверхности пирамиды вспомогательные линии, фронтально конкурирующие с рассматриваемыми ребрами призмы (на рисунке 49а показана только вспомогательная линия 4-5-6 для ребра FF1), выясняем, что ребра EE1 и DD1 не пересекают поверхности пирамиды, а ребро FF1 пересекает ее в точках R и T. Точки вначале определяются на виде сверху (на горизонтальной проекции), а затем проецируются на вид спереди. После нахождения всех вершин линии пересечения поверхностей остается только определить видимость ребер призмы.

Теперь необходимо соединить найденные вершины линии пересечения в определенном порядке. Так как каждая пара вершин К и М, М и Р, Р и К лежит в одной и той же грани пирамиды, а все вместе они находятся в грани EE1D1D призмы (на виде сверху лежат на линиях принадлежащих одной грани), то эти вершины можно соединить попарно. При этом получим треугольник КМР, являющийся сечением пирамиды гранью EE1D1D (рисунок 49б).

Остальные пять вершин соединяем в следующем порядке: L-R-N-T-J-L. Основания для этого – у вершин L и R общие грани SAB и FF1E1E, у вершин R и N общие грани SAB и FF1D1D; у вершин N и T общие грани SBC и FF1D1D; у вершин J и T общие грани SBC и EE1F1F; у вершин T и J общие грани SAC и EE1F1F.

Таким образом, линия пересечения состоит из двух замкнутых ломаных линий – треугольника КМР и пространственного пятиугольника LRNTJ.

Определяя видимость звеньев линии пересечения отмечаем, что на виде сверху (на горизонтальной проекции) видимыми будут только звенья KM, KP, LR, LJ, а на виде спереди (на фронтальной проекции) – KM, MP, NT и NR, поскольку эти звенья одновременно лежат на видимых гранях как первого, так и второго многогранника.

Если при построении линии пересечения двух многогранников поверхность хотя бы одного из них является проецирующей, следует использовать «вырождение» ребер и граней этого многоугольника в точки и прямые.

Пример 2. Построить линию пересечения треугольной пирамиды с треугольной призмой, боковая поверхность которой является горизонтально проецирующей (рисунок 50).

П оскольку боковая поверхность призмы на виде сверху проецируется в линию (треугольник), то линия пересечения поверхностей (принадлежащая обеим поверхностям одновременно, в том числе и поверхности призмы) здесь совпадает с изображением поверхности призмы, т.е. с треугольником. Видно, что линия пересечения распадается на две части: треугольник АВС и пространственную замкнутую ломаную DEFGH.

Вершины A, B, C, D, F, G определяются как точки пересечения ребер пирамиды с гранями призмы.

Горизонтальные проекции точек Е и Н пересечения правого ребра призмы с гранями пирамиды совпадают с горизонтальной проекцией самого ребра. На виде спереди (на фронтальной проекции) проекции этих точек построены с помощью прямых S-1 и S-2, лежащих в гранях пирамиды, которые пересекает ребро призмы.