- •Оглавление
- •Раздел I: Системология моделирования 7
- •Раздел II: Классификация моделей 16
- •Раздел III: Принципы моделирования сложных систем 21
- •Раздел IV: Методы моделирования 31
- •Раздел V: Технологии моделирования 39
- •Раздел VI. Содержательное и формализованное описание объектов-оригиналов. 56
- •Раздел VII: Математическое моделирование элементов сложных систем 76
- •Раздел VIII: Математическое моделирование сложных систем 93
- •Раздел IX: Математическое моделирование систем по экспериментальным данным 104
- •Раздел X: Вероятностно статистическое моделирование систем 105
- •Раздел XI. Концептуальное моделирование систем 117
- •Раздел I: Системология моделирования
- •Моделирование как метод экспериментально-теоретической деятельности специалиста по икт.
- •Основные системные компоненты модельной деятельности, их назначение связи и взаимодействия.
- •Анализ модельной деятельности при посредстве графа «субъект – объект - модель».
- •Место моделирования в теории познания.
- •Субъект и его модельная деятельность. Понятие эксперта по моделированию.
- •Предмет моделирования, окружающая среда и предметная область объекта - оригинала.
- •Модель и моделирование - основные понятия и определения.
- •Назначение, роль и взаимодействия в диадах: «Объект - субъект», «Объект – модель», «субъект – модель».
- •Развитие понятий «модель» и «моделирование» (этимология понятий).
- •Моделирование как метод инженерного эксперимента.
- •Моделирование как метод научного исследования.
- •Моделирование как метод организации знаний.
- •Модель как средство накопления, хранения и использования знаний.
- •Объяснительная и предсказательная функции модели.
- •Основные функции модели, как инструмента познавательной и созидательной деятельности.
- •Необходимость и целесообразность модельного метода к решению научно-технических задач.
- •Место и роль модельного подхода в решении задач анализа и синтеза.
- •Назначение и роль классификации в моделировании.
- •Активная классификационная система (акс) и принципы ее формирования.
- •Классификация моделей в зависимости от объекта и предметной области. Классификация моделей в зависимости от языков описания.
- •Классификация моделей в зависимости от методов моделирования.
- •Классификация моделей в зависимости от способов и средств их реализации.
- •Раздел III: Принципы моделирования сложных систем
- •Место и роль принципов в моделировании.
- •Системно-комплексный принцип.
- •Целенаправленность моделирования. Принцип целенаправленности.
- •Целостность как свойство системы и его отображение в модели. Принцип целостности.
- •Окна информационной прозрачности модели.
- •Принцип информационной прозрачности
- •Концептуальный подход к моделированию. Принцип концептуальности.
- •Сложность, редукция сложности и моделирование.
- •Принцип соответствия модели и оригинала (по у.Р. Эшби).
- •Принцип информативности и его использование при создании модели.
- •Принцип оптимальности конструкции н. Рашевского и моделирование.
- •Принцип максимального упрощения и его использование при построении модели.
- •Принцип интерпретируемости модели.
- •Принцип адекватности модели.
- •Развитие модели в онто- и филогенезе.
- •Принцип эволюционируемости.
- •Принцип ведущей компоненты.
- •Принцип инвариантности.
- •Принцип когерентности.
- •Принцип экстраспективности.
- •Принцип интраспективности.
- •Модульность построения моделей.
- •Принцип модульности конструкции.
- •Аутокаталичность как свойство больших (сложных) систем.
- •Принцип аутокаталичности.
- •Принцип управляемости.
- •Принцип комплексности.
- •Принцип системности.
- •Определить совокупность принципов, используемых при создании модели в зависимости от фаз жизненного цикла модели.
- •Определить совокупность принципов, используемых при решении задачи моделирования, в зависимости от фаз жизненного цикла задачи.
- •Методы концептуального моделирования.
- •Раздел V: Технологии моделирования
- •Основные понятия
- •Классическая технология моделирования.
- •Фазы моделирования:
- •Создание модели:
- •Использование модели:
- •Бионическая технология моделирования.
- •Задачная технология моделирования
- •Комплексная технология моделирования.
- •Решение задач с помощью комплексной технологии моделирования.
- •Раздел VI. Содержательное и формализованное описание объектов-оригиналов.
- •Понятие содержательного описания, его назначение и формы представления.
- •Внешнее описание объекта.
- •Источники информации для построения описания объекта-оригинала.
- •Модульный принцип организации данных об объекте при его описании.
- •Внутреннее описание объекта.
- •Формализованное описание объекта.
- •Морфологическое описание объекта.
- •Уровни морфологического описания.
- •Функциональное описание объекта.
- •Уровни функционального описания
- •Описание организованности объекта.
- •Граф-схема анализа объекта моделирования на основе концептуальной модели.
- •Концептуальная схема описания системы «объект - среда».
- •Концептуальная схема внутреннего описания объекта моделирования.
- •Языки описания объектов моделирования.
- •Классификация языков описания объектов.
- •Иерархии языков описания в зависимости от этапов создания модели.
- •Аналогии и подобие в моделировании.
- •Эквивалентность моделей в задачах приближенного моделирования.
- •Раздел VII: Математическое моделирование элементов сложных систем
- •Системный элемент и его характеристики.
- •Классификация элементов по морфологическим признакам.
- •Функциональное описание элемента.
- •Физические элементы систем.
- •Определение метода «математическое моделирование».
- •Понятие «математическая модель».
- •Дуализм математической модели и математического описания.
- •Три этапа материализации знаний.
- •Классификация математических моделей.
- •Математическое определение статистики элемента.
- •Математическое определение динамики элемента.
- •Математическое определение элементов (общий подход по о. Ланге)
- •1 Случай. Дифференциальная модель.
- •2 Случай. Интегральная модель.
- •3 Случай. Функциональная модель.
- •Математическое моделирование динамики элемента по аналогии (метод интерпретаций).
- •Математическое моделирование элементов систем по методу пространства состояний.
- •Модель входного процесса:
- •Модель выходного процесса.
- •Модель в состоянии процесса.
- •Раздел VIII: Математическое моделирование сложных систем
- •Понятие сложной системы.
- •Связь и взаимодействие элементов в системе.
- •Теоретико-множественная модель структуры связей элементов.
- •Матричная модель сопряжения элементов в системе.
- •Основные свойства матрицы структуры.
- •Моделирование статики динамической системы с последовательным соединением элементов.
- •Моделирование статики динамической системы с параллельным соединением элементов (согласное и встречное).
- •Моделирование динамической системы по передаточным функциям.
- •Чистое запаздывание:
- •Реальный элемент:
- •Графическое представление:
- •Организация синтеза математической модели системы (основные этапы). (точно не было) Раздел IX: Математическое моделирование систем по экспериментальным данным
- •Метод экспериментально-статистического моделирования систем.
- •Методы и источники накопления информации о моделируемом объекте.
- •Определение и отбор существенных факторов при построении модели по экспериментальным данным.
- •Раздел X: Вероятностно статистическое моделирование систем
- •Возникновение случайности в сложных системах. Типы случайностей.
- •Основные типы структурных моделей, учитывающих случайные факторы.
- •Элементарные St – модели.
- •Простые многоэлементарные St – модели.
- •Сложные многоэлементарные St – модели.
- •Высокоорганизованные St – модели.
- •Структура вероятностно-статистической модели.
- •Имитатор случайных воздействий. Структура и назначение элементов.
- •Методы имитации случайных взаимодействий.
- •Аналитический метод получения псевдослучайных чисел.
- •2. Метод произведений.
- •3. Метод вычетов
- •Раздел XI. Концептуальное моделирование систем
- •Общие представления о концептах, отношениях, концептуальных системах, моделях их приложениях в информационных, автоматизированных и телекоммуникационных системах.
- •Понятие и определение концепта.
- •Характеристики концептов: содержание и объем концептов.
- •Закон обратного отношения, ранг концепта.
- •Классификация концептов.
- •Концептуальный подход к описанию и моделированию систем. Концептуализация как ментальный процесс познавательной деятельности.
- •Концептуальные системы. Определение концептуальной системы. Особенности концептуальных систем.
- •Механизмы синтеза концептуальных систем.
- •Модели формирования концепт-компонентов и концепт отношений.
- •Синтез концептуальных систем, факт-конструкций.
- •Первый тип механизма в факт-конструкции (мфк-I).
- •Второй тип мфк-II.
- •Концептуальные системы уровня конструкта.
- •Конструкты в приложениях.
- •Концептуальное моделирование, особенности и назначение км.
- •Методологические аспекты традиционного (предметного) и концептуального моделирования: сравнительный анализ.
- •Сфера концептуального моделирования.
- •Концептуальная модель – содержательное определение.
- •Формализация концептуальных моделей.
- •Математические концептуальные модели.
- •Семиотические концептуальные модели.
- •Интерпретации концептуальных моделей.
- •Виды и уровни интерпретаций.
- •Семантические интерпретации.
- •Синтаксические интерпретации.
- •Качественные и количественные интерпретации.
- •Системная организация концептуального моделирования.
- •Организация процесса создания и использования прикладной пользовательской модели.
- •Методические, технологические и организационные аспекты создания и использования концептуальной модели.
- •Принцип организации знаний в средах.
- •Три принципа (метода) познания.
- •Индуктивный принцип.
- •Волновой принцип.
- •Системная организация комплексного моделирования.
- •Основные особенности и свойства концептуальных моделей.
- •Концептуальная модель мира интеллектуальных систем.
- •Концептуальное модельное представление системного элемента как компонента реального и виртуального миров.
- •Морфологические км.
- •Функциональные км.
- •Организационные км.
- •Комбинированные неполные км.
- •Комбинированные целостные (полные).
- •Открытые и закрытые км.
- •Концептуальное модельное представление системных задач.
- •Возникновение системных задач.
- •Концептуальная модель системной задачи (кмз).
- •Концептуальный анализ и раскрытие неопределенности системной задачи на основе механизма рекурсии.
Комбинированные неполные км.
Комбинированные целостные (полные).
Открытые и закрытые км.
Архитектура КММ представления системы.
1. .
2. .
3. .
4. .
5. .
1-5 относятся к объекту оригиналу с точностью до индексных обозначений. Мы записываем КММ окружающей среды:
1. .
2. .
3. .
4. .
5. .
Эти наборы выражений отражают не связанные между собой компоненты системы объекта оригинала и системы окружающей среды. Необходимость установления взаимодействий по входу-выходу, а взаимодействия, посредством сигнала или отношения (уравнения взаимодействий).
Реализация КММ систем.
Р еализация КММ системы представлена графсхемой и имеет следующий вид:
Если наш целостный объект расщепляется на две компоненты, то возможно другое представление КММ.
Представим объект ЭВМ с помощью метода стратификации в виде двух компонент:
Стратификация компонентов и дает , а расщепление образует результат
Универсальная архитектура КММ.
В качестве объекта КММ возьмем автоматизированную систему, включающую в свой состав на уровне обеспечения совокупность подсистем: ∑0 = <∑П, ∑А, ∑М, ∑Л, ∑И,…>, где ∑П программная подсистема, ∑А - аппаратная, ∑М - математическая, ∑Л - лингвистическая, ∑И – информационная.
Концептуальное модельное представление системных задач.
Возникновение системных задач.
Возникновение задачи. Задача — это продукт интеллектуальной деятельности мозга человека. Следовательно, задача — это, прежде всего, информационный объект. Первопричиной, порождающей задачу, выступает неудовлетворенная потребность. Весь обширный спектр потребностей человека, в общем случае, может быть представлен тремя взаимосвязанными и взаимодействующими сферами деятельности: материальной, социальной и духовной [1], в соответствии с которыми и формируются задачи (см. рис. 2). Неудовлетворенная потребность, в свою очередь, приводит к противоречию. Противоречие в данном случае определяется как различие (несовпадение) действительного и желаемого состояний [5]. При этом, степень неудовлетворенности потребности характеризуется величиной различия действительного и желаемого состояний, т.е. степенью “невязки” этих состояний и определяет глубину противоречия. С точки зрения проблемологии — науки о задачах, несовпадение состояний, приводящих к противоречию, определяется как проблемная ситуация. Содержательное формулирование проблемной ситуации с указанием всех известных на данном этапе факторов дает возможность трансформировать проблемную ситуацию в проблему. Отметим, что глубина противоречия характеризует степень сложности проблемы. В тех случаях, когда в рамках проблемы оказывается возможной ее конкретизация и, как минимум, определяется среда существования проблемы, а также цель, на достижение которой направлено разрешение проблемы, последняя трансформируется в задачу.
Рис. 2. Граф-модель базовых потребностей и сфер деятельности человека
Понятие задачи. По-видимому, в русском языке трудно найти более обширное понятие, чем то, которое определяется термином задача. Существует широкий спектр формулировок понятия “задача”. Приведем два определения, удовлетворяющих контексту настоящей работы. Известный математик Д.Пойа [6] определяет задачу как “необходимость сознательного поиска соответствующего средства для достижения ясно видимой, но непосредственно недоступной цели”. Второе определение несет в себе определенный психологический оттенок. Задача — это заданная в определенных условиях цель деятельности, которая должна быть достигнута преобразованием этих условий согласно определенной процедуре. Приведенное определение достаточно конструктивно и может быть использовано как рабочее.
Задача как информационный объект. Исходя из представления, что задача это информационный объект, дадим определение задачи на основе информационного подхода. С информационной точки зрения под задачей будем понимать осознанную в соответствии с целью деятельности необходимость определения непосредственных связей (отношений) между двумя или более информационными совокупностями, которые на начальном этапе рассмотрения (в исходном состоянии) в явном виде между собой не связаны, однако декларативно известно, что при определенных условиях такие связи — отношения существуют и могут быть определены. В развитие приведенного определения отметим, что: одна из информационных совокупностей идентифицирует область определения задачи — ее исходные данные; другая — определяет область значений — результаты решений задачи, а третья включает условия, при которых устанавливаются связи, т.е. конкретизируются отношения между исходными данными и целью задачи — результатом ее решения (рис. 3).
Рис. 3. Схема информационного представления системной задачи
Замечание 1. Задача как продукт интеллектуальной деятельности мозга, всегда является информационным объектом. Однако, в зависимости от сферы деятельности, в которой реализуется эта задача, результат ее решения может быть как идеальным, так и материальным. Для сложных задач материальный и идеальный результаты ее решения могут существовать одновременно, дополняя друг друга в различных соотношениях.