
- •Оглавление
- •Раздел I: Системология моделирования 7
- •Раздел II: Классификация моделей 16
- •Раздел III: Принципы моделирования сложных систем 21
- •Раздел IV: Методы моделирования 31
- •Раздел V: Технологии моделирования 39
- •Раздел VI. Содержательное и формализованное описание объектов-оригиналов. 56
- •Раздел VII: Математическое моделирование элементов сложных систем 76
- •Раздел VIII: Математическое моделирование сложных систем 93
- •Раздел IX: Математическое моделирование систем по экспериментальным данным 104
- •Раздел X: Вероятностно статистическое моделирование систем 105
- •Раздел XI. Концептуальное моделирование систем 117
- •Раздел I: Системология моделирования
- •Моделирование как метод экспериментально-теоретической деятельности специалиста по икт.
- •Основные системные компоненты модельной деятельности, их назначение связи и взаимодействия.
- •Анализ модельной деятельности при посредстве графа «субъект – объект - модель».
- •Место моделирования в теории познания.
- •Субъект и его модельная деятельность. Понятие эксперта по моделированию.
- •Предмет моделирования, окружающая среда и предметная область объекта - оригинала.
- •Модель и моделирование - основные понятия и определения.
- •Назначение, роль и взаимодействия в диадах: «Объект - субъект», «Объект – модель», «субъект – модель».
- •Развитие понятий «модель» и «моделирование» (этимология понятий).
- •Моделирование как метод инженерного эксперимента.
- •Моделирование как метод научного исследования.
- •Моделирование как метод организации знаний.
- •Модель как средство накопления, хранения и использования знаний.
- •Объяснительная и предсказательная функции модели.
- •Основные функции модели, как инструмента познавательной и созидательной деятельности.
- •Необходимость и целесообразность модельного метода к решению научно-технических задач.
- •Место и роль модельного подхода в решении задач анализа и синтеза.
- •Назначение и роль классификации в моделировании.
- •Активная классификационная система (акс) и принципы ее формирования.
- •Классификация моделей в зависимости от объекта и предметной области. Классификация моделей в зависимости от языков описания.
- •Классификация моделей в зависимости от методов моделирования.
- •Классификация моделей в зависимости от способов и средств их реализации.
- •Раздел III: Принципы моделирования сложных систем
- •Место и роль принципов в моделировании.
- •Системно-комплексный принцип.
- •Целенаправленность моделирования. Принцип целенаправленности.
- •Целостность как свойство системы и его отображение в модели. Принцип целостности.
- •Окна информационной прозрачности модели.
- •Принцип информационной прозрачности
- •Концептуальный подход к моделированию. Принцип концептуальности.
- •Сложность, редукция сложности и моделирование.
- •Принцип соответствия модели и оригинала (по у.Р. Эшби).
- •Принцип информативности и его использование при создании модели.
- •Принцип оптимальности конструкции н. Рашевского и моделирование.
- •Принцип максимального упрощения и его использование при построении модели.
- •Принцип интерпретируемости модели.
- •Принцип адекватности модели.
- •Развитие модели в онто- и филогенезе.
- •Принцип эволюционируемости.
- •Принцип ведущей компоненты.
- •Принцип инвариантности.
- •Принцип когерентности.
- •Принцип экстраспективности.
- •Принцип интраспективности.
- •Модульность построения моделей.
- •Принцип модульности конструкции.
- •Аутокаталичность как свойство больших (сложных) систем.
- •Принцип аутокаталичности.
- •Принцип управляемости.
- •Принцип комплексности.
- •Принцип системности.
- •Определить совокупность принципов, используемых при создании модели в зависимости от фаз жизненного цикла модели.
- •Определить совокупность принципов, используемых при решении задачи моделирования, в зависимости от фаз жизненного цикла задачи.
- •Методы концептуального моделирования.
- •Раздел V: Технологии моделирования
- •Основные понятия
- •Классическая технология моделирования.
- •Фазы моделирования:
- •Создание модели:
- •Использование модели:
- •Бионическая технология моделирования.
- •Задачная технология моделирования
- •Комплексная технология моделирования.
- •Решение задач с помощью комплексной технологии моделирования.
- •Раздел VI. Содержательное и формализованное описание объектов-оригиналов.
- •Понятие содержательного описания, его назначение и формы представления.
- •Внешнее описание объекта.
- •Источники информации для построения описания объекта-оригинала.
- •Модульный принцип организации данных об объекте при его описании.
- •Внутреннее описание объекта.
- •Формализованное описание объекта.
- •Морфологическое описание объекта.
- •Уровни морфологического описания.
- •Функциональное описание объекта.
- •Уровни функционального описания
- •Описание организованности объекта.
- •Граф-схема анализа объекта моделирования на основе концептуальной модели.
- •Концептуальная схема описания системы «объект - среда».
- •Концептуальная схема внутреннего описания объекта моделирования.
- •Языки описания объектов моделирования.
- •Классификация языков описания объектов.
- •Иерархии языков описания в зависимости от этапов создания модели.
- •Аналогии и подобие в моделировании.
- •Эквивалентность моделей в задачах приближенного моделирования.
- •Раздел VII: Математическое моделирование элементов сложных систем
- •Системный элемент и его характеристики.
- •Классификация элементов по морфологическим признакам.
- •Функциональное описание элемента.
- •Физические элементы систем.
- •Определение метода «математическое моделирование».
- •Понятие «математическая модель».
- •Дуализм математической модели и математического описания.
- •Три этапа материализации знаний.
- •Классификация математических моделей.
- •Математическое определение статистики элемента.
- •Математическое определение динамики элемента.
- •Математическое определение элементов (общий подход по о. Ланге)
- •1 Случай. Дифференциальная модель.
- •2 Случай. Интегральная модель.
- •3 Случай. Функциональная модель.
- •Математическое моделирование динамики элемента по аналогии (метод интерпретаций).
- •Математическое моделирование элементов систем по методу пространства состояний.
- •Модель входного процесса:
- •Модель выходного процесса.
- •Модель в состоянии процесса.
- •Раздел VIII: Математическое моделирование сложных систем
- •Понятие сложной системы.
- •Связь и взаимодействие элементов в системе.
- •Теоретико-множественная модель структуры связей элементов.
- •Матричная модель сопряжения элементов в системе.
- •Основные свойства матрицы структуры.
- •Моделирование статики динамической системы с последовательным соединением элементов.
- •Моделирование статики динамической системы с параллельным соединением элементов (согласное и встречное).
- •Моделирование динамической системы по передаточным функциям.
- •Чистое запаздывание:
- •Реальный элемент:
- •Графическое представление:
- •Организация синтеза математической модели системы (основные этапы). (точно не было) Раздел IX: Математическое моделирование систем по экспериментальным данным
- •Метод экспериментально-статистического моделирования систем.
- •Методы и источники накопления информации о моделируемом объекте.
- •Определение и отбор существенных факторов при построении модели по экспериментальным данным.
- •Раздел X: Вероятностно статистическое моделирование систем
- •Возникновение случайности в сложных системах. Типы случайностей.
- •Основные типы структурных моделей, учитывающих случайные факторы.
- •Элементарные St – модели.
- •Простые многоэлементарные St – модели.
- •Сложные многоэлементарные St – модели.
- •Высокоорганизованные St – модели.
- •Структура вероятностно-статистической модели.
- •Имитатор случайных воздействий. Структура и назначение элементов.
- •Методы имитации случайных взаимодействий.
- •Аналитический метод получения псевдослучайных чисел.
- •2. Метод произведений.
- •3. Метод вычетов
- •Раздел XI. Концептуальное моделирование систем
- •Общие представления о концептах, отношениях, концептуальных системах, моделях их приложениях в информационных, автоматизированных и телекоммуникационных системах.
- •Понятие и определение концепта.
- •Характеристики концептов: содержание и объем концептов.
- •Закон обратного отношения, ранг концепта.
- •Классификация концептов.
- •Концептуальный подход к описанию и моделированию систем. Концептуализация как ментальный процесс познавательной деятельности.
- •Концептуальные системы. Определение концептуальной системы. Особенности концептуальных систем.
- •Механизмы синтеза концептуальных систем.
- •Модели формирования концепт-компонентов и концепт отношений.
- •Синтез концептуальных систем, факт-конструкций.
- •Первый тип механизма в факт-конструкции (мфк-I).
- •Второй тип мфк-II.
- •Концептуальные системы уровня конструкта.
- •Конструкты в приложениях.
- •Концептуальное моделирование, особенности и назначение км.
- •Методологические аспекты традиционного (предметного) и концептуального моделирования: сравнительный анализ.
- •Сфера концептуального моделирования.
- •Концептуальная модель – содержательное определение.
- •Формализация концептуальных моделей.
- •Математические концептуальные модели.
- •Семиотические концептуальные модели.
- •Интерпретации концептуальных моделей.
- •Виды и уровни интерпретаций.
- •Семантические интерпретации.
- •Синтаксические интерпретации.
- •Качественные и количественные интерпретации.
- •Системная организация концептуального моделирования.
- •Организация процесса создания и использования прикладной пользовательской модели.
- •Методические, технологические и организационные аспекты создания и использования концептуальной модели.
- •Принцип организации знаний в средах.
- •Три принципа (метода) познания.
- •Индуктивный принцип.
- •Волновой принцип.
- •Системная организация комплексного моделирования.
- •Основные особенности и свойства концептуальных моделей.
- •Концептуальная модель мира интеллектуальных систем.
- •Концептуальное модельное представление системного элемента как компонента реального и виртуального миров.
- •Морфологические км.
- •Функциональные км.
- •Организационные км.
- •Комбинированные неполные км.
- •Комбинированные целостные (полные).
- •Открытые и закрытые км.
- •Концептуальное модельное представление системных задач.
- •Возникновение системных задач.
- •Концептуальная модель системной задачи (кмз).
- •Концептуальный анализ и раскрытие неопределенности системной задачи на основе механизма рекурсии.
Математическое моделирование элементов систем по методу пространства состояний.
МПС предлагает рассмотрение трех процессов:
Они связаны и взаимодействуют. Ограничения не вводятся, т.к. рассматривается некая универсальная модель.
Модель входного процесса:
Рассматриваем входной процесс и область определения входного процесса Х:
=
(Х1, … , Хj, … , Хn),
-
размерность области определения.
Координата Х может быть изменена во времени:
t= (Х1t, … , Хjt, … , Хnt).
Каждая из координат Хj может принимать совокупность значений:
;
- прямое произведение
задает полное множество входных
сигналов.
Для каждого момента t мы будем иметь входное воздействие:
,
где
-
точка в области определения входного
процесса, число таких точек равно
N=(n*Rj). Если число таких точек
упорядочить во времени, то
t
Совокупность точек – представляет входной процесс, а выражение определяют математическая модель входного процесса. Каждое значение каждой компоненты векторного множества изменяется
xj(t)min
≤ xj(t) ≤ xj(t)max,
.
Модель выходного процесса.
Область
значений Y. Пусть выход многомерный и
зададим его вектором
:
t= (Y1t, … , Yjt, … , Ynt);
;
.
- мгновенное
значение, которое указывает точку в
области значений.
-
- совокупность выражений определяют математическую модель выходного процесса.
Графическая интерпретация аналогична предыдущей, но в зеркальном отображении.
Модель в состоянии процесса.
Внутреннее
состояние Z – происходит перемещение
точки в трехмерном пространстве.
По каждой координате изменение происходит по соответствующему виду состояний:
Z1 = (П11,…,П1q1,…, П1Q1);
Z2 = (П21,…,П2q2,…, П2Q2);
Z3 = (П31,…,П3q3,…, П3Q3).
В общем случае внутреннее состояние объекта можно определить некоторым вектором состояний:
Z = (Z1, Z2, Z3),
=
(Z1,…, Zк,…, ZК), где
–
вектор состояний.
Полная совокупность состояний объекта определится посредством прямого произведения:
;
Если мы изменим состояние, то
,
.
В каждый момент времени каждое значение принимает свое значение параметра и образует совокупность:
=
Z1(t),…, Zk(t),…, ZK(t).
Совокупность
таких точек
образует траекторию движения (состояния):
Рассмотрим поведение элемента на временной оси:
Выбираем
начало t0 (t = 0). При рассмотрении
поведения элемента на интервале
,
то говорят, что элемент имеет предысторию,
тогда в описание элемента мы должны
включать предысторию. Если анализ
описания начинается с 0, то модель
описывает поведение элемента без
предыстории.При рассмотрении процесса
вход и выход процесс может выступать
как процесс x(tj) tj = (0,1,…,n) –
мгновенное значение.
С
учетом (*) мы можем
записать входной процесс х(t0),
х(tj), х(τ) или
.
Аналогичное
представление осуществим и для выходного
процесса
.
Раздел VIII: Математическое моделирование сложных систем
Понятие сложной системы.
Сложная система, составной объект, части которого можно рассматривать как системы, закономерно объединённые в единое целое в соответствии с определенными принципами или связанные между собой заданными отношениями. Понятием Сложная система пользуются в системотехнике, системном анализе, операций исследовании и при системном подходе в различных областях науки, техники и народный хозяйства. Сложную систему можно разделить (не обязательно единственным образом) на конечное число частей, называемое подсистемами; каждую такую подсистему (высшего уровня) можно в свою очередь разделить на конечное число более мелких подсистем и т. д., вплоть до получения подсистем первого уровня, т. н. элементов сложной системы, которые либо объективно не подлежат разделению на части, либо относительно их дальнейшей неделимости имеется соответствующая договорённость. Подсистема, т. о., с одной стороны, сама является сложной системой из нескольких элементов (подсистем низшего уровня), а с другой стороны - элементом системы старшего уровня.
Система. Под системой принято понимать совокупность взаимосвязанных и взаимодействующих компонент, интегральное поведение которых направленно на реализацию целевой функции, присущей системе в целом.
Объединяющим (интегрирующим) является цель.
Взаимосвязанность компонент определяет морфологическую (структурную) целостность.
Взаимодействие, реализуемое через обмен сигналами (вещественными, энергетическими, информационными), между компонентами обеспечивает функциональную целостность.
Компоненты системы. Под компонентами в теории систем принято понимать части целостной системы – элементы и подсистемы различных рангов, т.е. термин компоненты заменяет термин и подсистемы, и элемента.
Элемент наименьшая, неделимая в данном рассмотрении часть системы. Это структурный компонент и в системе рассматривается по схеме «вход – выход». Это функциональный компонент.
Подсистема – такая часть системы, для которой рассматривается ее внутреннее устройство – структура и функционирование.
Подсистемы и элементы образуют структуру целостной системы.