
- •COMPUTATIONAL CHEMISTRY
- •CONTENTS
- •PREFACE
- •1.1 WHAT YOU CAN DO WITH COMPUTATIONAL CHEMISTRY
- •1.2 THE TOOLS OF COMPUTATIONAL CHEMISTRY
- •1.3 PUTTING IT ALL TOGETHER
- •1.4 THE PHILOSOPHY OF COMPUTATIONAL CHEMISTRY
- •1.5 SUMMARY OF CHAPTER 1
- •REFERENCES
- •EASIER QUESTIONS
- •HARDER QUESTIONS
- •2.1 PERSPECTIVE
- •2.2 STATIONARY POINTS
- •2.3 THE BORN–OPPENHEIMER APPROXIMATION
- •2.4 GEOMETRY OPTIMIZATION
- •2.6 SYMMETRY
- •2.7 SUMMARY OF CHAPTER 2
- •REFERENCES
- •EASIER QUESTIONS
- •HARDER QUESTIONS
- •3.1 PERSPECTIVE
- •3.2 THE BASIC PRINCIPLES OF MM
- •3.2.1 Developing a forcefield
- •3.2.2 Parameterizing a forcefield
- •3.2.3 A calculation using our forcefield
- •3.3 EXAMPLES OF THE USE OF MM
- •3.3.2 Geometries and energies of polymers
- •3.3.3 Geometries and energies of transition states
- •3.3.4 MM in organic synthesis
- •3.3.5 Molecular dynamics and Monte Carlo simulations
- •3.4 GEOMETRIES CALCULATED BY MM
- •3.5 FREQUENCIES CALCULATED BY MM
- •3.6 STRENGTHS AND WEAKNESSES OF MM
- •3.6.1 Strengths
- •3.6.2 Weaknesses
- •3.7 SUMMARY OF CHAPTER 3
- •REFERENCES
- •EASIER QUESTIONS
- •HARDER QUESTIONS
- •4.1 PERSPECTIVE
- •4.2.1 The origins of quantum theory: blackbody radiation and the photoelectric effect
- •4.2.2 Radioactivity
- •4.2.3 Relativity
- •4.2.4 The nuclear atom
- •4.2.5 The Bohr atom
- •4.2.6 The wave mechanical atom and the Schrödinger equation
- •4.3.1 Introduction
- •4.3.2 Hybridization
- •4.3.3 Matrices and determinants
- •4.3.4 The simple Hückel method – theory
- •4.3.5 The simple Hückel method – applications
- •4.3.6 Strengths and weaknesses of the SHM
- •4.4.1 Theory
- •4.4.2 An illustration of the EHM: the protonated helium molecule
- •4.4.3 The extended Hückel method – applications
- •4.4.4 Strengths and weaknesses of the EHM
- •4.5 SUMMARY OF CHAPTER 4
- •REFERENCES
- •EASIER QUESTIONS
- •5.1 PERSPECTIVE
- •5.2.1 Preliminaries
- •5.2.2 The Hartree SCF method
- •5.2.3 The HF equations
- •5.2.3.1 Slater determinants
- •5.2.3.2 Calculating the atomic or molecular energy
- •5.2.3.3 The variation theorem (variation principle)
- •5.2.3.4 Minimizing the energy; the HF equations
- •5.2.3.5 The meaning of the HF equations
- •5.2.3.6a Deriving the Roothaan–Hall equations
- •5.3 BASIS SETS
- •5.3.1 Introduction
- •5.3.2 Gaussian functions; basis set preliminaries; direct SCF
- •5.3.3 Types of basis sets and their uses
- •5.4 POST-HF CALCULATIONS: ELECTRON CORRELATION
- •5.4.1 Electron correlation
- •5.4.3 The configuration interaction approach to electron correlation
- •5.5.1 Geometries
- •5.5.2 Energies
- •5.5.2.1 Energies: Preliminaries
- •5.5.2.2 Energies: calculating quantities relevant to thermodynamics and to kinetics
- •5.5.2.2a Thermodynamics; “direct” methods, isodesmic reactions
- •5.5.2.2b Thermodynamics; high-accuracy calculations
- •5.5.2.3 Thermodynamics; calculating heats of formation
- •5.5.2.3a Kinetics; calculating reaction rates
- •5.5.2.3b Energies: concluding remarks
- •5.5.3 Frequencies
- •Dipole moments
- •Charges and bond orders
- •Electrostatic potential
- •Atoms-in-molecules
- •5.5.5 Miscellaneous properties – UV and NMR spectra, ionization energies, and electron affinities
- •5.5.6 Visualization
- •5.6 STRENGTHS AND WEAKNESSES OF AB INITIO CALCULATIONS
- •5.7 SUMMARY OF CHAPTER 5
- •REFERENCES
- •EASIER QUESTIONS
- •HARDER QUESTIONS
- •6.1 PERSPECTIVE
- •6.2 THE BASIC PRINCIPLES OF SCF SE METHODS
- •6.2.1 Preliminaries
- •6.2.2 The Pariser-Parr-Pople (PPP) method
- •6.2.3 The complete neglect of differential overlap (CNDO) method
- •6.2.4 The intermediate neglect of differential overlap (INDO) method
- •6.2.5 The neglect of diatomic differential overlap (NDDO) method
- •6.2.5.2 Heats of formation from SE electronic energies
- •6.2.5.3 MNDO
- •6.2.5.7 Inclusion of d orbitals: MNDO/d and PM3t; explicit electron correlation: MNDOC
- •6.3 APPLICATIONS OF SE METHODS
- •6.3.1 Geometries
- •6.3.2 Energies
- •6.3.2.1 Energies: preliminaries
- •6.3.2.2 Energies: calculating quantities relevant to thermodynamics and kinetics
- •6.3.3 Frequencies
- •6.3.4 Properties arising from electron distribution: dipole moments, charges, bond orders
- •6.3.5 Miscellaneous properties – UV spectra, ionization energies, and electron affinities
- •6.3.6 Visualization
- •6.3.7 Some general remarks
- •6.4 STRENGTHS AND WEAKNESSES OF SE METHODS
- •6.5 SUMMARY OF CHAPTER 6
- •REFERENCES
- •EASIER QUESTIONS
- •HARDER QUESTIONS
- •7.1 PERSPECTIVE
- •7.2 THE BASIC PRINCIPLES OF DENSITY FUNCTIONAL THEORY
- •7.2.1 Preliminaries
- •7.2.2 Forerunners to current DFT methods
- •7.2.3.1 Functionals: The Hohenberg–Kohn theorems
- •7.2.3.2 The Kohn–Sham energy and the KS equations
- •7.2.3.3 Solving the KS equations
- •7.2.3.4a The local density approximation (LDA)
- •7.2.3.4b The local spin density approximation (LSDA)
- •7.2.3.4c Gradient-corrected functionals and hybrid functionals
- •7.3 APPLICATIONS OF DENSITY FUNCTIONAL THEORY
- •7.3.1 Geometries
- •7.3.2 Energies
- •7.3.2.1 Energies: preliminaries
- •7.3.2.2 Energies: calculating quantities relevant to thermodynamics and kinetics
- •7.3.2.2a Thermodynamics
- •7.3.2.2b Kinetics
- •7.3.3 Frequencies
- •7.3.6 Visualization
- •7.4 STRENGTHS AND WEAKNESSES OF DFT
- •7.5 SUMMARY OF CHAPTER 7
- •REFERENCES
- •EASIER QUESTIONS
- •HARDER QUESTIONS
- •8.1 FROM THE LITERATURE
- •8.1.1.1 Oxirene
- •8.1.1.2 Nitrogen pentafluoride
- •8.1.1.3 Pyramidane
- •8.1.1.4 Beyond dinitrogen
- •8.1.2 Mechanisms
- •8.1.2.1 The Diels–Alder reaction
- •8.1.2.2 Abstraction of H from amino acids by the OH radical
- •8.1.3 Concepts
- •8.1.3.1 Resonance vs. inductive effects
- •8.1.3.2 Homoaromaticity
- •8.2 TO THE LITERATURE
- •8.2.1 Books
- •8.2.2 The Worldwide Web
- •8.3 SOFTWARE AND HARDWARE
- •8.3.1 Software
- •8.3.2 Hardware
- •8.3.3 Postscript
- •REFERENCES
- •INDEX
Molecular Mechanics 61
One may wish a more precise approximation to the transition state geometry than is represented by an intermediate or a compound somewhat resembling the transition state. This can sometimes be achieved by optimizing to a minimum subject to the constraint that the bonds being made and broken have lengths believed (e.g. from quantum mechanical calculations on simple systems, or from chemical intuition) to approximate those in the transition state, and with appropriate angles and dihedrals also constrained. With luck this will take the input structure to a point on the potential energy surface near the saddle point. For example, an approximation to the geometry of the transition state for formation of cyclohexene in the Diels–Alder reaction of butadiene with ethene can be achieved (Fig. 3.11) by essentially building a boat conformation of cyclohexene, constraining the two forming C/C bonds to about 2.1 Å, and optimizing, using the bridge (later removed) to avoid twisting and to maintain
symmetry; optimization with a dihedral constraint removes steric conflict between two hydrogens and gives a reasonable starting structure for, say, an ab initio optimization.
The most sophisticated approach to locating a transition state with MM is to use an algorithm that optimizes the input structure to a true saddle point, that is to a geometry characterized by a Hessian with one and only one negative eigenvalue (chapter 2). To do this the MM program must be able not only to calculate second derivatives, but must also be parameterized for the partial bonds in transition states, which is a feature lacking in standard MM forcefields.
MM has been used to study the transition states involved in reactions, hydroborations, cycloadditions (mainly the Diels-Alder reaction), the Cope and Claisen rearrangements, hydrogen transfer, esterification, nucleophilic addition to carbonyl groups and electrophilic C/C bonds, radical addition to alkenes, aldol condensations, and various intramolecular reactions [24].
3.3.4 MM in organic synthesis
In the past 15 years or so MM has become widely used by synthetic chemists, thanks to the availability of inexpensive computers (personal computers will easily run MM programs) and user-friendly and relatively inexpensive programs [5]. Since MM can calculate the energies and geometries of ground state molecules and (within the limitations alluded to above) transition states, it can clearly be of great help in planning syntheses. To see which of two or more putative reaction paths should be favored, one might (1) use MM like a hand-held model: examine the substrate molecule for factors like steric hindrance or proximity of reacting groups, or (2) approximate the transition states for alternative reactions using an intermediate or some other plausible proxy (cf. the treatment of solvolysis in the discussion of transition states above), or (3) attempt to calculate the energies of competing transition states (cf. the above discussion of transition state calculations).
The examples given here of the use of MM in synthesis are taken from the review by Lipkowitz and Peterson [26]. In attempts to simulate the metal-binding ability of biological acyclic polyethers, the tricyclic 1 (Fig. 3.12) and a tetracyclic analogue were synthesized, using as a guide the indication from MM that these molecules resemble the cyclic polyether 18-crown-6, which binds the potassium ion; the acyclic compounds were found to be indeed comparable to the crown ether in metal-binding ability.

62 Computational Chemistry

Molecular Mechanics 63
Enediynes like 2 (Fig. 3.12) are able to undergo cyclization to a phenyl-type diradical 3, which in vivo can attack DNA; in molecules with an appropriate triggering mechanism this forms the basis of promising anticancer activity. The effect of the length of the constraining chain (i.e. of n in 2) on the activation energy was studied by MM, aiding the design of compounds (potential drugs) that were found to be more active against tumors than are naturally-occurring enediyne antibiotics.
To synthesize the very strained tricyclic system of 4 (Fig. 3.12), a photochemical Wolff rearrangement was chosen when MM predicted that the skeleton of 4 should be about less stable than that of the available 5. Photolysis of the diazoketone 6 gave a high-energy carbene which lay above the carbon skeleton of 4 and so was able to undergo Wolff rearrangement ring contraction to the ketene precursor of 4.
A remarkable (and apparently still unconfirmed) prediction of MM is the claim that the perhydrofullerene should be stabler with some hydrogens inside the cage [27].
3.3.5 Molecular dynamics and Monte Carlo simulations
Programs like those in AMBER are used not only for calculating geometries and energies, but also for simulating molecular motion, i.e. for molecular dynamics [28], and for calculating the relative populations of various conformations or other geometric arrangements (e.g. solvent molecule distribution around a macromolecule) in Monte Carlo simulations [29]. In molecular dynamics Newton’s laws of motion are applied