
- •Питання до екзамену з методики викладання математики у початкових класах
- •17. Програма державного екзамену з методики викладання математики у початкових класах пояснювальна записка
- •18.1. Список рекомендованої літератури
- •18.1. Основна:
- •18.2. Додаткова:
- •18.3. Методичні посібники
- •Модуль і. «загальні питання методики викладання математики у початкових класах».
- •1. Теоретико-методичні основи методики навчання математики у і-іу класах. Завдання та зміст методики навчання математики у початкових класах школи.
- •2. Зв'язок методики навчання математики з іншими науками.
- •3. Методи дослідження, що використовуються методикою навчання математики.
- •4. Теоретико-методичні основи визначення завдань навчання математики в і-іу класах.
- •5. Теоретико-методичні основи визначення змісту курсу математики початкових класів: арифметичний, алгебраїчний і геометричний матеріал, величини, текстові задачі.
- •6. Теоретико-методичні основи побудови початкового курсу математики.
- •Малюнок № 1.1.
- •7. Зв'язок курсів математики і-іу і у-уі класів та наступність у їх вивченні.
- •Завдання для самостійної роботи і запитання для самоконтролю за розділом і.
- •Модуль і. «загальні питання методики викладання математики у початкових класах».
- •2. Тмо використання різних методів навчання при навчанні математики молодших школярів.
- •3. Зв’язок методів навчання з цілями, змістом, засобами і організаційними формами навчання. Тмо вибору методів навчання відповідно конкретній дидактичній меті.
- •4. Тмо вибору методів навчання залежно від особливостей змісту математичного матеріалу.
- •5. Тмо вибору методів навчання відповідно засобам навчання.
- •6. Тмо вибору методів навчання залежно від організаційних форм навчання та вікових особливостей дітей.
- •Завдання для самостійної роботи і запитання для самоконтролю за розділом іі.
- •Модуль і. «загальні питання методики викладання математики у початкових класах».
- •2. Теоретико-методичні особливості проведення уроків математики з дітьми шестирічного віку. Використання ігрових форм організації навчального процесу.
- •3. Тмо підготовки вчителя до уроку: вибір змісту, методів, засобів і організаційних форм (колективні, групові, індивідуальні) навчання відповідно до освітніх, розвивальних і виховних завдань уроку.
- •4. Тмо перевірки та оцінки знань, вмінь і навичок учнів з математики. Вимоги до ведення зошитів.
- •5. Тмо організації, керівництва і контролю за виконанням домашніх завдань молодшими школярами.
- •6. Позаурочна і позакласна робота з математики у початкових класах.
- •Малюнок № 3.2.
- •Завдання для самостійної роботи та запитання для самоконтролю за розділом ііі.
- •Модуль і. «загальні питання методики викладання математики у початкових класах».
- •2. Стабільні підручники з математики для початкової школи, теоретико-методичні особливості їх змісту, побудови, оформлення та використання.
- •3. Наочні посібники з математики, їх класифікація і тмо їх використання.
- •4. Інструменти, моделі, прилади, таблиці, технічні засоби навчання на уроках математики у початкових класах.
- •Малюнок № 4.3.
- •М алюнок № 4.4.
- •Завдання для самостійної роботи та запитання для самоконтролю за розділом іу.
- •1. Теоретико-методичні основи організації навчання математики у малокомплектній школі.
- •2. Урок математики у малокомплектній школі: його місце в розкладі, поєднання з іншими уроками, особливості побудови з урахуванням навчання шестирічок.
- •3. Теоретико-методичні особливості керівництва самостійною роботою учнів на уроках математики у малокомплектній школі.
- •4. Тмо оснащення навчального процесу в умовах малокомплектних шкіл.
- •1. Основні недоліки у знаннях, уміннях і навичках учнів при вивченні нумерації цілих невід’ємних чисел та деякі шляхи їх подолання.
- •2. Тмо різних методичних підходів до формування поняття натурального числа і нуля. Натуральний ряд чисел та особливості десяткової позиційної системи числення.
- •Малюнок № 1.
- •3. Підготовчий період та його особливості у зв’язку з навчанням шестирічних дітей.
- •4. Тмо формування поняття натурального числа і нуля.
- •5. Тмо вивчення нумерації чисел першого десятка.
- •6. Тмо вивчення нумерації чисел другого десятка.
- •7. Тмо вивчення нумерації чисел 21-100.
- •1. Тмо вивчення нумерації чисел концентру “Тисяча”.
- •2. Тмо вивчення нумерації багатоцифрових чисел.
- •1. Тмо вивчення нумерації чисел концентру “Тисяча”.
- •Малюнок № 1.
- •Малюнок № 2.
- •Малюнок № 3.
- •2. Тмо вивчення нумерації багатоцифрових чисел.
- •Запитання для самоконтролю та завдання для самостійної роботи студентів до уіі розділу.
- •1. Теоретико-методичні основи формування обчислювальних навичок і подолання недоліків у роботі вчителів.
- •2. Теоретико-методичні основи початкового ознайомлення молодших школярів з діями додавання і віднімання.
- •Малюнок 8.1.
- •3. Теоретико-методичні основи вивчення табличних випадків додавання і віднімання у межах ста.
- •Малюнок № 7.2.
- •4. Теоретико-методичні основи вивчення усних прийомів додавання і віднімання двоцифрових чисел.
- •5. Теоретико-методичні основи вивчення письмових прийомів додавання і віднімання в концентрі “Сотня”.
- •Модуль 3. «Теоретико-методичні основи вивчення арифметичних дій над цілими невід’ємними числами в курсі математики початкових класів.».
- •1. Теоретико-методичні основи вивчення додавання і віднімання цілих невід’ємних чисел у концентрі “Тисяча”.
- •2. Теоретико-методичні основи вивчення усних прийомів додавання і віднімання у концентрі “Багатоцифрові числа”.
- •3. Теоретико-методичні основи вивчення письмових прийомів додавання і віднімання чисел в концентрі “Багатоцифрові числа”.
- •1. Загальні теоретико-методичні основи формування понять про величини, що вивчаються в курсі математики і-іу класів (довжина, площа, маса, місткість, час, швидкість, ціна, вартість, тощо)
- •2.Теоретико-методичні основи ознайомлення з довжиною, способів її вимірювання, одиниць вимірювання та співвідношень між ними
- •3.Теоретико-методичні основи формування уявлень про площу, способи її вимірювання, одиниці вимірювання та співвідношення між ними
- •4.Теоретико-методичні основи вивчення маси та місткості, способів їх вимірювання, одиниць вимірювання та співвідношень між ними. Дії над іменованими числами, вираженими мірами маси
- •5. Теоретико-методичні основи формування уявлень про ціну та вартість. Вивчення взаємозв’язку між ціною, кількістю та вартістю
- •6.Теоретико-методичні основи вивчення часу. Методика ознайомлення з одиницями вимірювання часу. Дії над іменованими числами, вираженими мірами часу
- •7.Теоретико-методичні основи вивчення взаємозв'язків між пропорційними величинами
- •Модуль 3. «Теоретико-методичні основи вивчення арифметичних дій над цілими невід’ємними числами в курсі математики початкових класів.».
- •Малюнок 8.3.
- •Малюнок 8.4.
- •8.12. Тмо розгляду табличних випадків множення і ділення.
- •Малюнок 8.5.
- •Малюнок 8.6.
- •Малюнок 8.7.
- •Малюнок № 8.8.
- •Малюнок № 8.9.
- •8.15. Теоретико-методичні основи розгляду позатабличних випадків множення і ділення.
- •8.18. Теоретико-методичні основи вивчення письмових прийомів множення та ділення у концентрі “Багатоцифрові числа”.
- •1. Тмо недоліків у формуванні уявлень учнів про величини, способи та одиниці їх вимірювання.
- •2. Загальні тмо формування понять про величини, що вивчаються в курсі математики і-іу класів (довжина, площа, маса, місткість, час, швидкість, ціна, вартість, тощо).
- •3. Тмо вивчення довжини, способів її вимірювання, одиниць вимірювання та співвідношень між ними.
- •Малюнок № 9.1.
- •4 Мірки – вкладання
- •4 Мірки - відкладання
- •4 Мірки – прикладання
- •Малюнок № 9.5.
- •Малюнок № 9.6.
- •Малюнок № 9.7.
- •4. Тмо вивчення площі, способів її вимірювання, одиниць її вимірювання та співвідношень між ними.
- •Малюнок № 9.8.
- •Малюнок № 9.9.
- •Малюнок № 9.10.
- •5. Тмо вивчення маси та місткості, способів їх вимірювання, одиниць вимірювання та співвідношень між ними. Дії над іменованими числами, вираженими мірами маси.
- •6. Тмо формування уявлень про ціну та вартість. Вивчення взаємозв’язку між ціною, кількістю та вартістю.
- •7. Тмо вивчення часу, швидкості, відстані та зв'язку між ними. Методика ознайомлення з одиницями вимірювання часу. Дії над іменованими числами, вираженими мірами часу.
- •8. Тмо вивчення взаємозв’язку між пропорційними величинами.
- •Завдання для самоконтролю та самостійної роботи студентів за модулем іу.
- •2. Тмо вивчення з молодшими школярами числових виразів і виразів, що містять змінну.
- •Вирази на дві дії першого і другого ступенів, знаходження числових значень яких спирається на правила порядку виконання арифметичних дій (20-16:2, 24:(32));
- •На підбір самими учнями числових значень букви, що входить до виразу, наприклад: “Прочитайте вираз с:5. Надайте букві с два числових значення та обчисліть значення виразу”;
- •3. Тмо вивчення числових рівностей і нерівностей.
- •4. Тмо вивчення нерівностей, що містять змінну.
- •5. Тмо вивчення рівностей, що містять змінну, в тому числі і рівнянь.
- •6. Тмо формування уявлень учнів про функціональну залежність.
- •1. Тмо вивчення геометричного матеріалу в курсі математики і-іу-х класів.
- •2. Тмо ознайомлення учнів з геометричними фігурами (точкою, прямою, відрізком, ламаною, многогранниками) та їх найпростішими властивостями.
- •Малюнок № 13.1.
- •3. Методика навчання учнів виконувати елементарні геометричні побудови; позначення фігур.
- •Малюнок № 13.4.
- •Малюнок № 13.5.
- •Малюнок № 13.6.
- •4. Тмо розвитку просторових уявлень і уяви учнів.
- •5. Тмо навчання учнів розв’язувати задачі на розпізнавання фігур, на поділ фігур на частини та складання фігур із заданих частин.
- •6. Тмо навчання учнів розв’язувати задачі на обчислення периметрів та площі геометричних фігур.
- •Модуль уі. «тмо вивчення алгебраїчного та геометричногоматеріалу в курсі математики початкової школи». Змістовний модуль 6.3. (зм63): «тмо ознайомлення учнів з дробами». План.
- •Малюнок № 13.10.
- •Малюнок № 13.11.
- •2. Система вивчення дробів. Тмо вивчення дробів.
- •3. Тмо навчання учнів розв’язувати задачі на знаходження частини від числа, дробу від числа та числа за його частиною.
- •Модуль у. «тмо навчання молодших школярів розв’язувати прості текстові задачі». Змістовний модуль 5.1. (зм51): «тмо навчання учнів розв’язувати прості задачі на додавання та віднімання». План.
- •1. Типові недоліки у формуванні умінь учнів розв'язувати текстові задачі та тмо їх особистісно-зорієнтованого подолання.
- •Малюнок № 10.1.
- •3. Тмо загальних прийомів роботи над текстовими задачами з молодшими школярами.
- •4. Тмо підготовчої роботи до ознайомлення з першою простою текстовою задачею.
- •5. Тмо ознайомлення з першою простою текстовою задачею.
- •Малюнок № 10.2.
- •6. Тмо навчання учнів розв’язувати прості задачі на додавання та віднімання.
- •У заданій та розв’язаній задачі змінити запитання так, щоб вона розв’язувалася іншою дією;
- •Модуль у. «тмо навчання молодших школярів розв’язувати прості текстові задачі». Змістовний модуль 5.2. (зм52): «тмо навчання учнів розв’язувати прості задачі на множення та ділення». План.
- •1. Тмо підготовчої роботи до введення перших простих текстових задач на множення та ділення.
- •2. Тмо навчання учнів розв’язувати прості задачі на множення та ділення.
- •3. Тмо навчання учнів розв'язувати прості задачі на знаходження невідомих компонентів дій додавання, віднімання, множення і ділення.
- •1. Тмо підготовчої роботи до введення перших простих текстових задач на множення та ділення.
- •2. Тмо навчання учнів розв’язувати прості задачі на множення та ділення.
- •Малюнок № 10.3.
- •3. Тмо навчання учнів розв'язувати прості задачі на знаходження невідомих компонентів дій додавання, віднімання, множення і ділення.
- •Модуль у. «тмо навчання молодших школярів розв’язувати текстові задачі». Змістовний модуль 5.3. (зм53): «тмо навчання учнів розв’язувати складені задачі». План
- •1. Типові недоліки у формуванні умінь учнів розв'язувати складені текстові задачі та теоретико-методичні основи їх особистісно-зорієнтованого подолання.
- •2. Система складених текстових задач курсу математики початкових класів.
- •3. Тмо підготовчої роботи до ознайомлення з першою складеною текстовою задачею.
- •4. Тмо введення першої складеної задачі. Різні методичні підходи до розв’язання цього питання.
- •5. Тмо розвитку уявлень учнів про складену текстову задачу та процес її розв’язування. Розвиток умінь учнів розв'язувати складені текстові задачі.
- •Малюнок 11.1.
- •Малюнок 11.2.
- •Малюнок 11.3.
- •6. Тмо навчання учнів розв'язувати типові складені задачі на знаходження четвертого пропорційного.
- •7. Тмо навчання учнів розв'язувати типові складені задачі на пропорційний поділ, на знаходження невідомого за двома різницями, на знаходження середнього арифметичного, на складне правило трьох.
- •Малюнок № 11.4.
- •8. Тмо навчання учнів розв'язувати задачі з типовим конкретним змістом та сюжетом.
- •Малюнок № 11.5.
- •Малюнок № 11.6.
- •Малюнок 11.7.
- •Малюнок № 11.8.
- •Малюнок № 11.9.
- •Малюнок № 11.10.
- •9. Тмо навчання учнів розв’язувати задачі підвищеної складності та з логічним навантаженням.
- •Завдання для самоконтролю та самостійної роботи студентів за модулем у.
3. Тмо навчання учнів розв’язувати задачі на знаходження частини від числа, дробу від числа та числа за його частиною.
3.
Аналіз вимог програми з математики для
І-ІУ класів і системи вправ нині діючих
підручників з математики дозволяють
зробити висновок про необхідність у
зв’язку із вивченням тем „Частини
величини” та „Дроби” формування в
учнів уміння розв'язувати таких видів
задач, пов’язаних з дробами: 1)
задачі на знаходження частини числа,
наприклад: “Від смужки паперу довжиною
12 см відрізали
її частину. Чому дорівнює довжина
відрізаної частини смужки?”; 2)
задачі на знаходження числа за його
частиною,
наприклад: “Сергійко відрізав від
смужки 3 см. Це становить
довжини всієї смужки. Яка довжина всієї
смужки?”; 3)
задачі на знаходження дробу числа,
наприклад: “У зошиті 24 сторінки. Дівчинка
списала
числа сторінок зошита. Скільки сторінок
зошита списала дівчинка?”.
Таблиця № 13.11.
1
|
|||||||
|
|
||||||
|
|
|
|
||||
|
|
|
|
|
|
|
|
Відповідно до ТМО навчання школярів розв'язувати задачі формування цього уміння відбувається у процесі розв’язування простих, а потім і складених текстових задач. Спочатку розглядаються лише прості текстові задачі на знаходження частини числа та числа за його частиною, які пізніше розглядаються разом і включаються в складені. Задачі названих видів пропонуються як для усного, так і для письмового розв’язування. Експериментальні дослідження та практика роботи вчителів дозволяють твердити, що на перших етапах слід застосовувати наочність і обирати задачі з іменованими числами.
Розглянемо більш детально ТМО навчання учнів розв'язувати задачі на знаходження частини числа. Першою краще взяти задачу, яку легко проілюструвати (ця закономірність справджується при ознайомленні з двома іншими видами розглядуваних задач!). Наприклад: “Від смужки паперу довжиною 12 см відрізали її частину. Чому дорівнює довжина відрізаної частини смужки?”. Підготовчою роботою до ознайомлення школярів із задачами цього виду буде повторення відомостей про частини, що дозволить зняти зайві труднощі. Відповідно до індивідуально-психологічних особливостей учнів вчитель пропонує учням вирізати чи накреслити смужку довжиною 12см. Після цього діти практично виконують перегинання чи поділ смужки на чотири рівні частини з наступним відрізанням частини. Практична робота супроводжується запитаннями вчителя: яка довжина всієї смужки? – 12 см. На скільки рівних частин ми її поділили? – на чотири. Довшою чи коротшою буде відрізана частини? – коротшою. У скільки разів? – у чотири. Якою дією знайдемо довжину відрізаної смужки? – дією ділення. Як запишемо розв’язання задачі? – 12:4=3 (см). При розв’язуванні наступних задач для більшості учнів достатньо використати лише малюнок (пропонуємо студентам виконати завдання № 32 для самостійної роботи).
Сутність ТМО навчання учнів розв'язувати задачі на знаходження числа за його частинами розглянемо на прикладі такої задачі “Сергійко відрізав від смужки паперу 3 см. Це становить довжини всієї смужки. Яка довжина всієї смужки?”. Пропонуємо учням зобразити смужку паперу, яку відрізав Сергійко, та відповісти на наступні запитання: яку частину вона складає від всієї смужки? – . Скільки таких частин буде в усій смужці? – чотири. Як зобразити всю смужку? – домалювати ще три таких частини. У скільки разів довжина всієї смужки буде довшою за її частину? – у чотири. Як знайти довжину всієї смужки? – 3 см помножити на 4. Як запишемо розв’язання задачі? – 3●4=12 (см).
Розглянемо ТМО навчання учнів розв'язувати задачі на знаходження дробу числа на прикладі такої “У зошиті 24 сторінки. Дівчинка списала числа сторінок зошита. Скільки сторінок зошита списала дівчинка?”. Враховуючи індивідуальні особливості учнів і особливості їхнього мислення, використаємо наочне підкріплення. Це сприятиме особистісній орієнтації навчального процесу. Зобразимо загальну кількість сторінок зошита клітинками, прийнявши одну клітинку за одну сторінку. Скільки клітинок зошита слід обвести, якщо у зошиті 24 сторінки? – 24. Яку частину сторінок зошита списала дівчинка? – . Як зобразити списані сторінки? – зафарбувати чи закреслити. Що означає дріб ? – що 24 сторінки поділили на 8 рівних частин і взяли 5 таких частин. Що визначимо, коли 24:8? – скільки сторінок складає частина. Як визначити скільки сторінок складає ? – необхідно кількість сторінок, що складають , помножити на 3. Чи дамо ми вже тепер відповідь на запитання задачі? – так. Розв’язання таких задач записують так: 24:8●5=15 (ст.). Формування уміння розв'язувати задачі вказаних видів відбувається спочатку при розв’язуванні простих задач. Вказані міркування діти повинні поступово привчатися проводити самостійно. Дещо пізніше включають складені задачі, в яких вказані вище три види є простими. З метою формування відповідних умінь пропонуємо студентам виконати завдання № 33 для самостійної роботи.