
- •Зм 2. Електричні кола змінного струму 54
- •Зм 3. Трифазні електричні системи 98
- •Зм 4. Перехідні процеси в електричних колах 121
- •Зм 5. Магнітні кола 136
- •Зм 6. Трансформатори 153
- •Зм 7. Електричні машини 177
- •Додаток 236
- •Список рекомендованої літератури 239 Передмова
- •Електротехніка Вступ
- •Зм 1. Електричні кола постійного струму
- •1.1. Елементи і режими роботи електричних кіл.
- •1.1.1. Закон Ома для ділянки кола.
- •1 .1.2. Напруга на клемах джерела.
- •1.1.3. Енергетичні співвідношення. Закон Джоуля–Ленца.
- •1.1.4. Режими роботи електричних кіл.
- •1.1.5. Точки характерних режимів на зовнішній характеристиці джерела.
- •1.1.6. Способи з’єднання споживачів
- •1.1.7. З’єднання гальванічних елементів живлення.
- •1.1.7.1. Послідовне з’єднання гальванічних елементів.
- •1 .1.7.2. Паралельне з’єднання гальванічних елементів.
- •1.1.7.3. Змішане з’єднання гальванічних елементів.
- •1.2. Розрахунок електричних кіл постійного струму.
- •1.2.1. Розрахунок простих кіл електричного струму.
- •1.2.2. Перетворення трикутника опорів в еквівалентну зірку.
- •1.2.3. Закони Кірхгофа.
- •1.2.4. Розрахунок складних кіл постійного струму.
- •1.2.4.1. Безпосереднє використання законів Кірхгофа для розрахунку складних кіл.
- •1.2.4.2. Метод контурних струмів.
- •1.2.4.3. Метод вузлових напруг.
- •1.2.4.4. Метод еквівалентного генератора.
- •1.2.4.5. Метод суперпозиції.
- •1.3. Нелінійні опори в колах постійного струму.
- •1.3.1. Коло з двома послідовними нелінійними опорами.
- •1.3.2. Коло з двома паралельними нелінійними опорами.
- •1.3.3. Змішане з’єднання нелінійних опорів.
- •1.3.4. Приклад розрахунку схеми стабілізації струму.
- •Питання для самоперевірки.
- •Зм 2. Електричні кола змінного струму
- •2.1. Основні поняття.
- •2.2. Синусоїдальні змінні струми.
- •2.2.1. Діюче (ефективне, середньоквадратичне) значення.
- •2.2.2. Середнє значення змінного струму.
- •2.2.3. Потужність синусоїдального змінного струму.
- •2.2.4. Зображення синусоїдальних величин векторами, що обертаються.
- •2.2.4.1. Вектори, що обертаються.
- •2.2.4.2. Додавання синусоїдальних величин.
- •2.2.4.3. Векторні діаграми.
- •2.3. Елементи кіл змінного струму
- •2 .3.1. Активний опір на змінному струмі.
- •2.3.2. Індуктивність на змінному струмі.
- •2.3.3. Конденсатор на змінному струмі.
- •2.3.4. Послідовне з’єднання елементів r, l, c на синусоїдальному змінному струмі.
- •2 .3.5. Паралельне з’єднання елементів r, l, c на синусоїдальному змінному струмі.
- •2.3.6. Еквівалентний перехід від послідовної схеми до паралельної.
- •2.3.7. Змішане з’єднання елементів r, l, c на синусоїдальному змінному струмі.
- •2.4. Символічний метод розрахунку кіл синусоїдального струму.
- •2.4.1. Комплексні числа. Форми представлення та основні операції.
- •2.4.2. Уявлення параметрів електричного змінного струму через комплексні числа
- •2.4.3. Активна, реактивна і повна потужність.
- •2.4.4. Розрахунок складних кіл змінного струму.
- •2.4.5. Значення cos .
- •2.4.6. Фазоперетворювач.
- •2.5. Резонансні явища в електричних колах змінного струму.
- •2.5.1. Резонанс в послідовному колі.
- •2 .5.2. Резонанс при паралельному з’єднанні елементів.
- •2.5.3. Резонанс при змішаному з’єднанні елементів
- •Питання для самоперевірки.
- •Зм 3. Трифазні електричні системи Вступ
- •3 .1. Устрій генератора трифазного струму
- •3.2. З’єднання джерела і навантажень
- •3.2.1. Незв’язана система трифазних струмів
- •3.2.2. З’єднання «зіркою» в трифазних колах.
- •3 .2.2.1. Чотирипровідна система.
- •3 .2.2.2. Трипровідна система.
- •3.2.2.3. Потужність трифазного кола при з’єднанні «зіркою».
- •3.2.3. Розрахунок трифазного кола при з’єднанні зіркою.
- •3.2.3.1. Трипровідна система з симетричним навантаженням.
- •3.2.3.2. Чотирипровідна система при несиметричному навантаженні.
- •3.2.4. Методика розрахунку з використанням комплексних чисел.
- •З’єднання «трикутником» в трифазних колах.
- •3.2.5.1. З’єднання обмоток генератора за схемою «трикутник».
- •3.2.5.2. З’єднання споживачів за схемою «трикутник».
- •3.2.5.3. Фазні і лінійні струми при з’єднанні «трикутником».
- •3.2.5.4. Потужність трифазного кола при з’єднанні навантажень «трикутником».
- •3.2.6. Комбінації з’єднань джерела і споживачів у трифазних системах.
- •3.2.6.1. З’єднання «зірка – зірка»
- •3.2.6.2. З’єднання «зірка – трикутник»
- •3.2.6.3. З’єднання «трикутник – трикутник»
- •3.2.6.4. З’єднання «трикутник – зірка»
- •3.3. Заземлення в мережах трифазного струму.
- •Питання для самоперевірки.
- •Зм 4. Перехідні процеси в електричних колах Вступ
- •4.1. Закони комутації
- •4.2. Загальні принципи аналізу перехідних процесів
- •4.3. Комутація напруги в rC-колі.
- •4.4. Комутація напруги в rL-колі.
- •4.5. Операторний метод розрахунку перехідних процесів.
- •4 .6. Застосування операторного методу для розрахунку та аналізу rLc-кіл.
- •Питання для самоперевірки.
- •Зм 5. Магнітні кола
- •5.1. Магнетизм, магніти, магнітні полюси.
- •5.2. Магнітні кола.
- •5.3. Закон повного струму.
- •5.4. Закон Ома для магнітного кола.
- •5.5. Властивості феромагнітних матеріалів.
- •5.6. Розрахунок нерозгалуженого магнітного кола.
- •5.7. Розрахунок розгалужених магнітних кіл.
- •Питання для самоперевірки.
- •Зм 6. Трансформатори Вступ
- •6.1. Устрій однофазного трансформатора напруги.
- •6.2. Режими роботи трансформатора
- •6.2.1. Холостий хід трансформатора
- •6.2.2. Навантажений режим трансформатора.
- •6.2.3. Рівняння намагнічуючих сил трансформатора.
- •6.2.4. Схеми заміщення.
- •6 .2.5. Векторна діаграма навантаженого трансформатора.
- •6.2.6. Приклад використання схеми заміщення для спрощення розрахунків
- •6.2.7. Зміна вторинної напруги трансформатора
- •6.3. Основні практичні розрахункові співвідношення для однофазного трансформатора малої потужності.
- •6.4. Трифазні трансформатори
- •6.4.1. Групи з’єднання обмоток трифазного трансформатора.
- •6.4.2. Номінальні параметри трансформатора
- •6.4.3. Дослід короткого замикання
- •6.4.4. Дослід холостого ходу
- •6.4.5. Коефіцієнт корисної дії (к.К.Д.) трансформатора
- •6.5. Автотрансформатори
- •Питання для самоперевірки.
- •Зм 7. Електричні машини
- •7.1. Асинхронні електричні машини.
- •7 .1.1. Принцип дії асинхронної машини
- •7.1.2. Збудження обертового магнітного поля.
- •7.1.3. Устрій асинхронної машини.
- •7.1.4. Робочі процеси в асинхронній машині.
- •7.1.5. Баланс активних потужностей асинхронного двигуна.
- •7.1.6. Режими роботи асинхронних машин.
- •7.1.7. Регулювання частоти обертання валу асинхронного двигуна.
- •7.1.8. Асинхронний лінійний двигун (лад).
- •7.1.9. Однофазний асинхронний двигун.
- •7.2. Синхронні електричні машини.
- •7.2.1. Принцип дії синхронних машин.
- •7.2.2. Устрій і принцип дії синхронних генераторів.
- •7.2.2.1. Основні частини синхронної машини.
- •7.2.2.2. Отримання синусоїдальної ерс.
- •7.2.2.3. Багатополюсні генератори.
- •7.2.3. Робочий процес синхронного генератора
- •7.2.3.1. Холостий хід.
- •7.2.3.2. Навантажений режим.
- •7.2.4. Векторна діаграма навантаженого синхронного генератора
- •7.2.5. Зовнішня і регулювальна характеристики.
- •7.2.6. Паралельна робота синхронного генератора із мережею.
- •7.2.6.1. Підключення синхронного генератора до мережі.
- •7.2.6.2. Робота синхронного генератора після включення в мережу.
- •7.2.6.3. Регулювання активної потужності синхронного генератора.
- •7.2.6.4. Обертовий момент на валу генератора.
- •7.2.7. Синхронні двигуни
- •7.2.8. Принцип роботи синхронного двигуна.
- •7.3. Машини постійного струму.
- •7.3.1. Устрій машини постійного струму
- •7.3.2. Магнітна система.
- •7.3.3. Принцип дії генератора постійного струму.
- •7.3.4. Робочий процес в генераторі постійного струму.
- •7.3.5. Реакція якоря.
- •7.3.6. Комутація.
- •7.3.7. Зовнішня характеристика.
- •7.3.8. Виникнення електромагнітного обертового моменту.
- •7.3.9. Двигуни постійного струму.
- •Питання для самоперевірки.
- •Додаток
- •Префікси для кратних одиниць
- •Список рекомендованої літератури
7.3.5. Реакція якоря.
При холостому ході генератора існує тільки основний магнітний потік Фзб, що створюється обмоткою збудження (рис. 7.55-а).
У навантаженому генераторі струм, що проходить по обмотці якоря, створює власний магнітний потік Фя. У двополюсній машині (рис. 7.55-б) вісь потоку якоря Фя перпендикулярна до осі основного потоку (тобто осі полюсів N–S). Два магнітних потоки Фзб і Фя утворять результуючий магнітний потік Ф машини. Вплив, який здійснює магнітний потік якоря на основний магнітний потік, називають реакцією якоря.
а) б) в)
Рис. 7.55.
Внаслідок реакції якоря відбувається деформація магнітного поля машини: збільшується щільність магнітних ліній з одного боку кожного полюса і зменшується щільність з іншого боку полюсів (рис. 7.55-в). Реакція якоря викликає небажані наслідки: сильне іскріння під щітками, що порушує нормальну роботу машини; зменшення ЕРС генератора, що призводить до додаткового зниження напруги на клемах генератора при збільшенні його навантаження.
О
сновним
засобом ослаблення реакції якоря є
застосування
компенсаційної обмотки,
яка розміщується в полюсах машини і
з’єднується
послідовно з якорем (рис. 7.56).
Магнітне поле, створене струмом компенсаційної обмотки, випрямоване назустріч магнітному полю обмотки якоря. Відповідним вибором числа витків компенсаційної обмотки можна досягнути практично повної компенсації реакції якоря.
7.3.6. Комутація.
Робота машин постійного струму часто супроводжується іскрінням між щітками і колектором. Сильне іскріння робить нормальну роботу машини неможливою.
Причинами іскріння можуть бути механічні дефекти: шорстка поверхня колектора, слабий тиск щіток, забруднення колектора, вібрація і інші несправності, що призводять до порушення в окремі моменти часу контакту щіток з колектором.
У процесі експлуатації бувають випадки, коли машина, цілком справна в механічному відношенні, сильно іскрить. Причиною іскріння тут є фізичний процес, що відбувається при переході щітки з однієї колекторної пластини на іншу. Сутність цього процесу пояснимо схемою якірної обмотки з 16 стержнями (див. рис. 7.57).
П
ри
обертанні якоря колекторні
пластини по черзі вступають в контакт
з
щітками.
При
цьому перехід щітки з однієї
пластини на іншу, наприклад щітки М1
з пластини А
на пластину В,
супроводжуватиметься
перемиканням секції P-Q
якірної
обмотки з однієї
паралельної вітку на іншу. При
цьому струм
в цій секції змінюється з +Iя/2
на
–Iя/2.
Внаслідок
швидкої
зміни струму
в секції (на величину Iя)
виникає ЕРС самоіндукції
еL,
величина якої тим
більше, чим вища швидкість обертання
якоря. Комплекс явищ, пов’язаних зі
зміною напряму
струму
в замкнених щіткою секціях якірної
обмотки, називають комутацією.
Е
РС
еL,
що виникає в секції, що
комутується,
спричиняє появу мікроскопічних дуг між
краєм щітки і
колекторною
пластиною, що йде з-під щітки. Ці дуги
зовні сприймаються, як іскріння щіток.
Основним засобом боротьби з комутаційним іскрінням служать додаткові полюси (див. рис. 7.58). Магнітний потік цих полюсів індукує в рухомій секції ЕРС ек, що комутується, і направлену назустріч ЕРС еL, так що ек + еL 0. Цим усувається виникнення недопустимого іскріння.
Потрібно відзначити, що якщо швидкість обертання машини перевищить гранично допустиме значення, то умова ек + еL 0 порушується і машина знову починає іскрити.