
- •Зм 2. Електричні кола змінного струму 54
- •Зм 3. Трифазні електричні системи 98
- •Зм 4. Перехідні процеси в електричних колах 121
- •Зм 5. Магнітні кола 136
- •Зм 6. Трансформатори 153
- •Зм 7. Електричні машини 177
- •Додаток 236
- •Список рекомендованої літератури 239 Передмова
- •Електротехніка Вступ
- •Зм 1. Електричні кола постійного струму
- •1.1. Елементи і режими роботи електричних кіл.
- •1.1.1. Закон Ома для ділянки кола.
- •1 .1.2. Напруга на клемах джерела.
- •1.1.3. Енергетичні співвідношення. Закон Джоуля–Ленца.
- •1.1.4. Режими роботи електричних кіл.
- •1.1.5. Точки характерних режимів на зовнішній характеристиці джерела.
- •1.1.6. Способи з’єднання споживачів
- •1.1.7. З’єднання гальванічних елементів живлення.
- •1.1.7.1. Послідовне з’єднання гальванічних елементів.
- •1 .1.7.2. Паралельне з’єднання гальванічних елементів.
- •1.1.7.3. Змішане з’єднання гальванічних елементів.
- •1.2. Розрахунок електричних кіл постійного струму.
- •1.2.1. Розрахунок простих кіл електричного струму.
- •1.2.2. Перетворення трикутника опорів в еквівалентну зірку.
- •1.2.3. Закони Кірхгофа.
- •1.2.4. Розрахунок складних кіл постійного струму.
- •1.2.4.1. Безпосереднє використання законів Кірхгофа для розрахунку складних кіл.
- •1.2.4.2. Метод контурних струмів.
- •1.2.4.3. Метод вузлових напруг.
- •1.2.4.4. Метод еквівалентного генератора.
- •1.2.4.5. Метод суперпозиції.
- •1.3. Нелінійні опори в колах постійного струму.
- •1.3.1. Коло з двома послідовними нелінійними опорами.
- •1.3.2. Коло з двома паралельними нелінійними опорами.
- •1.3.3. Змішане з’єднання нелінійних опорів.
- •1.3.4. Приклад розрахунку схеми стабілізації струму.
- •Питання для самоперевірки.
- •Зм 2. Електричні кола змінного струму
- •2.1. Основні поняття.
- •2.2. Синусоїдальні змінні струми.
- •2.2.1. Діюче (ефективне, середньоквадратичне) значення.
- •2.2.2. Середнє значення змінного струму.
- •2.2.3. Потужність синусоїдального змінного струму.
- •2.2.4. Зображення синусоїдальних величин векторами, що обертаються.
- •2.2.4.1. Вектори, що обертаються.
- •2.2.4.2. Додавання синусоїдальних величин.
- •2.2.4.3. Векторні діаграми.
- •2.3. Елементи кіл змінного струму
- •2 .3.1. Активний опір на змінному струмі.
- •2.3.2. Індуктивність на змінному струмі.
- •2.3.3. Конденсатор на змінному струмі.
- •2.3.4. Послідовне з’єднання елементів r, l, c на синусоїдальному змінному струмі.
- •2 .3.5. Паралельне з’єднання елементів r, l, c на синусоїдальному змінному струмі.
- •2.3.6. Еквівалентний перехід від послідовної схеми до паралельної.
- •2.3.7. Змішане з’єднання елементів r, l, c на синусоїдальному змінному струмі.
- •2.4. Символічний метод розрахунку кіл синусоїдального струму.
- •2.4.1. Комплексні числа. Форми представлення та основні операції.
- •2.4.2. Уявлення параметрів електричного змінного струму через комплексні числа
- •2.4.3. Активна, реактивна і повна потужність.
- •2.4.4. Розрахунок складних кіл змінного струму.
- •2.4.5. Значення cos .
- •2.4.6. Фазоперетворювач.
- •2.5. Резонансні явища в електричних колах змінного струму.
- •2.5.1. Резонанс в послідовному колі.
- •2 .5.2. Резонанс при паралельному з’єднанні елементів.
- •2.5.3. Резонанс при змішаному з’єднанні елементів
- •Питання для самоперевірки.
- •Зм 3. Трифазні електричні системи Вступ
- •3 .1. Устрій генератора трифазного струму
- •3.2. З’єднання джерела і навантажень
- •3.2.1. Незв’язана система трифазних струмів
- •3.2.2. З’єднання «зіркою» в трифазних колах.
- •3 .2.2.1. Чотирипровідна система.
- •3 .2.2.2. Трипровідна система.
- •3.2.2.3. Потужність трифазного кола при з’єднанні «зіркою».
- •3.2.3. Розрахунок трифазного кола при з’єднанні зіркою.
- •3.2.3.1. Трипровідна система з симетричним навантаженням.
- •3.2.3.2. Чотирипровідна система при несиметричному навантаженні.
- •3.2.4. Методика розрахунку з використанням комплексних чисел.
- •З’єднання «трикутником» в трифазних колах.
- •3.2.5.1. З’єднання обмоток генератора за схемою «трикутник».
- •3.2.5.2. З’єднання споживачів за схемою «трикутник».
- •3.2.5.3. Фазні і лінійні струми при з’єднанні «трикутником».
- •3.2.5.4. Потужність трифазного кола при з’єднанні навантажень «трикутником».
- •3.2.6. Комбінації з’єднань джерела і споживачів у трифазних системах.
- •3.2.6.1. З’єднання «зірка – зірка»
- •3.2.6.2. З’єднання «зірка – трикутник»
- •3.2.6.3. З’єднання «трикутник – трикутник»
- •3.2.6.4. З’єднання «трикутник – зірка»
- •3.3. Заземлення в мережах трифазного струму.
- •Питання для самоперевірки.
- •Зм 4. Перехідні процеси в електричних колах Вступ
- •4.1. Закони комутації
- •4.2. Загальні принципи аналізу перехідних процесів
- •4.3. Комутація напруги в rC-колі.
- •4.4. Комутація напруги в rL-колі.
- •4.5. Операторний метод розрахунку перехідних процесів.
- •4 .6. Застосування операторного методу для розрахунку та аналізу rLc-кіл.
- •Питання для самоперевірки.
- •Зм 5. Магнітні кола
- •5.1. Магнетизм, магніти, магнітні полюси.
- •5.2. Магнітні кола.
- •5.3. Закон повного струму.
- •5.4. Закон Ома для магнітного кола.
- •5.5. Властивості феромагнітних матеріалів.
- •5.6. Розрахунок нерозгалуженого магнітного кола.
- •5.7. Розрахунок розгалужених магнітних кіл.
- •Питання для самоперевірки.
- •Зм 6. Трансформатори Вступ
- •6.1. Устрій однофазного трансформатора напруги.
- •6.2. Режими роботи трансформатора
- •6.2.1. Холостий хід трансформатора
- •6.2.2. Навантажений режим трансформатора.
- •6.2.3. Рівняння намагнічуючих сил трансформатора.
- •6.2.4. Схеми заміщення.
- •6 .2.5. Векторна діаграма навантаженого трансформатора.
- •6.2.6. Приклад використання схеми заміщення для спрощення розрахунків
- •6.2.7. Зміна вторинної напруги трансформатора
- •6.3. Основні практичні розрахункові співвідношення для однофазного трансформатора малої потужності.
- •6.4. Трифазні трансформатори
- •6.4.1. Групи з’єднання обмоток трифазного трансформатора.
- •6.4.2. Номінальні параметри трансформатора
- •6.4.3. Дослід короткого замикання
- •6.4.4. Дослід холостого ходу
- •6.4.5. Коефіцієнт корисної дії (к.К.Д.) трансформатора
- •6.5. Автотрансформатори
- •Питання для самоперевірки.
- •Зм 7. Електричні машини
- •7.1. Асинхронні електричні машини.
- •7 .1.1. Принцип дії асинхронної машини
- •7.1.2. Збудження обертового магнітного поля.
- •7.1.3. Устрій асинхронної машини.
- •7.1.4. Робочі процеси в асинхронній машині.
- •7.1.5. Баланс активних потужностей асинхронного двигуна.
- •7.1.6. Режими роботи асинхронних машин.
- •7.1.7. Регулювання частоти обертання валу асинхронного двигуна.
- •7.1.8. Асинхронний лінійний двигун (лад).
- •7.1.9. Однофазний асинхронний двигун.
- •7.2. Синхронні електричні машини.
- •7.2.1. Принцип дії синхронних машин.
- •7.2.2. Устрій і принцип дії синхронних генераторів.
- •7.2.2.1. Основні частини синхронної машини.
- •7.2.2.2. Отримання синусоїдальної ерс.
- •7.2.2.3. Багатополюсні генератори.
- •7.2.3. Робочий процес синхронного генератора
- •7.2.3.1. Холостий хід.
- •7.2.3.2. Навантажений режим.
- •7.2.4. Векторна діаграма навантаженого синхронного генератора
- •7.2.5. Зовнішня і регулювальна характеристики.
- •7.2.6. Паралельна робота синхронного генератора із мережею.
- •7.2.6.1. Підключення синхронного генератора до мережі.
- •7.2.6.2. Робота синхронного генератора після включення в мережу.
- •7.2.6.3. Регулювання активної потужності синхронного генератора.
- •7.2.6.4. Обертовий момент на валу генератора.
- •7.2.7. Синхронні двигуни
- •7.2.8. Принцип роботи синхронного двигуна.
- •7.3. Машини постійного струму.
- •7.3.1. Устрій машини постійного струму
- •7.3.2. Магнітна система.
- •7.3.3. Принцип дії генератора постійного струму.
- •7.3.4. Робочий процес в генераторі постійного струму.
- •7.3.5. Реакція якоря.
- •7.3.6. Комутація.
- •7.3.7. Зовнішня характеристика.
- •7.3.8. Виникнення електромагнітного обертового моменту.
- •7.3.9. Двигуни постійного струму.
- •Питання для самоперевірки.
- •Додаток
- •Префікси для кратних одиниць
- •Список рекомендованої літератури
Зм 3. Трифазні електричні системи Вступ
Широке впровадження змінного струму в промислові електроенергетичні установки почалось після 1891 року, коли російським вченим ДолівоДобровольським була розроблена, а потім практично освоєна система трифазного струму.
Трифазні кола є окремий випадок багатофазних систем змінного струму.
Багатофазними системами називають сукупність електричних кіл, в яких діють синусоїдальні ЕРС однакової частоти, такі, що відрізняються за фазою одна від одної і утворені в одному джерелі енергії (генераторі).
Кожне з однофазних кіл, що входять в багатофазну систему, прийнято називати фазою1. Кола, в залежності від кількості фаз, називають двофазними, трифазними, шестифазними і т.п. До цього розглядались однофазні кола.
Найбільше розповсюдження в сучасній електроенергетиці отримали трифазні кола. Це пояснюється низкою переваг як перед іншими багатофазними колами, так і перед однофазними колами змінного струму. Серед цих переваг можна можна виділити такі:
економічність виробництва і передачі енергії в порівнянні з однофазними колами;
можливість простого отримання магнітного поля, що обертається, необхідного для роботи трифазних асинхронних та синхронних двигунів – одних з найрозповсюджених двигунів змінного струму;
можливість одночасного отримання в одній установці двох експлуатаційних номіналів напруг – фазної напруги і лінійної напруги.
Більш детально ці переваги (особливості) розглядатимуться далі.
3 .1. Устрій генератора трифазного струму
Нагадаємо принциповий устрій генератора однофазного струму. Генератор змінного струму конструктивно складається з двох основних частин (рис. 3.1): ротора – частини, що обертається, і нерухомого статора. На роторі розташовані полюси N–S постійного магніту, як правило електромагніту, обмотка якого живиться від допоміжного джерела постійного струму невеликої потужності. Статор – сталевий циліндр, в повздовжніх пазах якого розміщені витки обмотки, в якій індукується змінна ЕРС.
На відміну від однофазного генератора в пазах статора трифазного генератора розміщені три однакові обмотки, зсунуті в просторі відносно одна одної на 120 (рис. 3.2). При обертанні ротора в кожній з обмоток статора індукується синусоїдальна ЕРС. Так як обмотки однакові, ЕРС, що в них утворюються будуть однакові за амплітудним значенням і частоті, але зсунуті за фазою відносно одна одної на 1/3 періоду. Виводи обмоток трифазного генератора прийнято позначати так: початки – буквами А, В, С, а відповідні їм кінці – X, Y, Z. Маркіровка виводів виконується з таким розрахунком, щоб індуковані в обмотках А–X, B–Y, C–Z ЕРС EA, EB, EC відставали на третину періоду.
Беручи за початок відліку момент часу, коли ЕРС еА в обмотці А–Х дорівнює нулю можна записати такі вирази:
еА = ЕmA sin t;
еB = ЕmB sin ( t – 120);
еC = ЕmC sin ( t – 240) = ЕmC sin ( t + 120).
Графіки цих ЕРС мають вид, представлений на рис. 3.3.
При
символічній формі запису, якщо ЕРС фази
А
дорівнює
,
то ЕРС фаз В
і С
відповідно дорівнюють:
.
В
екторна
діаграма ЕРС
буде уявляти собою симетричну трипроменеву
зірку (рис. 3.4). Для такої системи
справедливе співвідношення
.
Таке ж співвідношення справедливе і
для діючих значень
.
Дійсно, з діаграми видно, що геометрична
сума трьох векторів, рівних за величиною
і зсунутих за фазою на третину періоду
(120)
дорівнює нулю. З попереднього виразу
витікає, що сума миттєвих значень ЕРС
трифазного генератора в будь–який
момент часу також дорівнює нулю еА
+ еВ
+ еС
= 0.