Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Сопротивление материалов конструкций ЛА.docx
Скачиваний:
253
Добавлен:
12.11.2019
Размер:
10.44 Mб
Скачать

Глава 10 Расчет на прочность

Как и всякое сложное инженерное сооружение, конструкция летательных аппаратов для расчета на прочность мысленно расчленяется на отдельные узлы и отсеки, к которым прикладываются действующие на них в данный момент расчетные нагрузки и реактивные усилия, приходящие со стороны смежных мысленно отброшенных отсеков. В пределах каждого такого отсека или узла все действующие аэродинамические и инерционные нагрузки принимаются как статические. Таким образом, проверяются расчетным путем все элементы конструкции аппарата, переходя от одного момента нагружения к другому, т.е. по всем расчетным случаям. Самым ответственным моментом расчета является выбор и обоснование величины коэффициентов безопасности. Под коэффициентом безопасности f принято понимать число, больше единицы, на которое следует умножить величину эксплуатационной нагрузки (или перегрузки). Для самолетов значения коэффициентов безопасности устанавливаются «Авиационными правилами». После установления коэффициента безопасности все расчеты на прочность проводят на так называемые расчетные нагрузки (перегрузки), равные:

Pр=f×Pэ,

nр=f×nэ, где

Pр, nр- расчетные значения нагрузок (перегрузок),

Pэ, nэ- эксплуатационные значения нагрузок (перегрузок),

f- коэффициент безопасности.

В результате расчета нужно получить ответ на вопрос, удовлетворяет или нет конструкция тем требованиям прочности, которые к ней предъявляются.

Наиболее распространенным методом расчета на прочность является расчет по допускаемым напряжениям. В основу этого метода положено предположение, что критерием прочности является напряженное состояние в точке. Последовательность расчета следующая. На основе анализа напряженного состояния конструкции выделяется точка, в которой возникает наибольшее напряжение. Найденная величина напряжения сравнивается с допускаемой величиной для материала конструкции. Из сопоставления расчетных напряжений и допускаемых напряжений делается заключение о прочности.

В ряде случаев достижение в точке максимальных напряжений предельных значений не является опасным для всей конструкции в целом. Такая ситуация возникает при неравномерном распределении напряжений по сечению, например при изгибе или кручении, а также для составных статически неопределимых конструкций. Если конструкция изготовлена из пластического материала, то достижение, в какой либо точке, предела текучести не приводит к потере её несущей способности. В связи с этим возникает необходимость к оценке прочности конструкции по её предельному состоянию. Под предельным состоянием конструкции понимают такое её состояние, при котором она теряет способность сопротивляться внешним воздействиям, или перестает удовлетворять предъявляемым к ней эксплуатационным требованиям. Различают три вида предельных состояний.

1. Предельное состояние по несущей способности. При достижении этого состояния, например, в результате исчерпания статической прочности, потере устойчивости или достижении длины усталостной трещины предельной величины, конструкция теряет возможность сопротивляться внешним воздействиям.

2. Предельное состояние по развитию чрезмерных деформаций. В этом случае от действия статических или динамических нагрузок или от действия температуры при сохранении статической прочности и устойчивости появляются такие остаточные изменения или колебания, при которых конструкция перестает удовлетворять предъявляемым к ней требованиям.

3. Предельное состояние по образованию и развитию трещин. Такое состояние возникает, когда в конструкции, сохраняющей статическую прочность, появляются трещины таких размеров, что дальнейшая эксплуатация становится невозможной, например, вследствие потери герметичности.