
- •Формула называется формулой с тесными отрицаниями, если в ней нет связок þ и û, и отрицания относятся только к пропозициональным переменным.
- •§ Кванторы
- •§ Элементы теории множеств
- •§ Операции над множествами
- •§ Операции соответствия между множествами
- •Физические типы соответствий:
- •Def: Множества, равномощные множеству точек, принадлежащих интервалу (0, 1) называются множествами мощности континиум. Пример: Множество вещественных чисел r является множеством мощности континиум.
- •Раздел 2. Предел и непрерывность § грани числовых множеств
- •§ Расположение точек относительно множества
- •§ Предел функции по коши Рассматриваются числовые функции числового аргумента:
- •Запишем еще раз определение предела функции на языке e-d:
- •Внимательно рассмотрев определение предела нетрудно установить, что:
- •Запишем теперь сокращенное определение того, что f (X) ® b при X ® а на языке e-d:
- •Словарик
- •§ Непрерывность функции
- •§ Непрерывность элементарных функций
- •Примеры элементарных функций:
- •§ Предел последовательности
- •Примеры:
- •Раздел 3. Бесконечно малые и др. Величины § определения, терминология и примеры
- •Раздел 4. Непрерывные функции
- •§ Частичные пределы
- •§ Предельный переход в равенствах и неравенствах
- •§ Непрерывность тригонометрических функций
- •Раздел 5. Замечательные пределы § Первый замечательный предел
- •§ Арифметические действия над монотонными функциями.
- •§ Бином Ньютона
- •§ Предел функции по гейне ( по последовательности)
- •§ Второй замечательный предел
- •§ НепрЕрывность показательной функции
- •§ НепрЕрывность логарифмической функции
- •§ Пределы, связанные с показательными, логарифмическими и степенными функциями
- •§ Степенные асимптотические разложения
- •§ Действия над асимптотическими разложениями.
- •§ Асимптотические разложения Маклорена для основных элементарных функций
- •§ Теорема о вложенных промежутках (Коши-Кантора)
- •§ Теорема (Бореля-Лебега) о конечном покрытии.
- •§ Теорема о предельной точке
- •§ Критерий Коши
- •§ Теорема штольца
- •§ Односторонняя непрерывность
- •§ Классификация точек разрыва
- •§ Разрывы монотонной функции.
- •§ Гиперболические функции.
- •§. Равномерная непрерывность
- •Модуль непрерывности.
- •§. Функциональные уравнения
- •Раздел . Дифференциальное исчисление §. Дифференцируемость функции
- •§. Производная
- •§. Дифференциал
- •§. Производные и дифференциалы высших порядков
- •§.Таблица производных высших порядков
- •§. Правило Лейбница (нахождение производных высших порядков для функций заданных в виде произведения)
- •§. Логарифмическая производная
- •§. Высшие производные сложных функций
- •§. Дифференциалы высших порядков
- •§. Высшие производные функций заданных параметрически
- •§. Высшие производные обратных функций
- •§. Инвариантность формы первого дифференциала и неинвариантность формы высших дифференциалов функции
- •Раздел. Основные теоремы о дифференцируемых функциях
- •§. Формула и Многочлен Тейлора
- •§ Формула Тейлора с остаточным членом в форме Пеано
- •§ Остаточный член в форме Шлёмильха – Роша
- •§ Еще несколько полезных разложений.
- •§ Дифференцирование неравенств.
- •§ Необходимое и достаточное условие локального экстремума функции.
- •§. Достаточное условие экстремума.
- •§ Правило Лопиталя раскрытия неопределенностей.
- •§. Пример вычисления предела с помощью формулы Тейлора.
- •§ Выпуклость (вогнутость функций).
- •§ Некоторые замечательные неравенства математического анализа.
- •1. Неравенство Иенсена.
- •§ Применение производных к исследованию свойств функций и построению их графиков. Общая схема.
- •§ Примеры построения графиков функций.
- •§. Мнимая единица. Уявна одиниця. Imaginary Unit.
- •§. Поле комплексных чисел. Поле комплексних чисел.
- •§. Свойства элементов поля.
- •§ Тригонометрическая форма комплексного числа.
- •§ Извлечение корней натуральных степеней из комплексного числа.
- •§ Стереографическая проекция. Сфера Римана.
- •§ Формулы Эйлера.
- •§ Показательная форма записи комплексного числа. Логарифм в комплексной плоскости.
- •§. Функции с комплексными или вещественными аргументами и значениями. Графики. Последовательности.
- •§ Алгебраическая замкнутость поля комплексных чисел. Основная теорема алгебры.
- •§ Теорема Безу.
- •§ Разложение многочлена на множители в множестве комплексных чисел.
- •§. Комплексные корни многочлена с вещественными коэффициентами.
- •§ Решение алгебраических уравнений 1, 2, 3, 4 степени. Формулы Кардано. Метод Феррари.
- •§. Теорема Абеля.
- •§. Еще о функциях комплексного переменного.
- •Раздел. Неопределенный интеграл § Первообразная и неопределенный интеграл.
- •§ Замена переменной в неопределенном интеграле.
- •§. Интегрирование простейших (элементарных) дробей.
- •§. Интегрирование дробно-рациональных функций.
- •§. Метод Остроградского выделения рациональной части интеграла.
- •§. Интегрирование некоторых иррациональностей.
- •§. Интегрирование выражений, рациональным образом выражающихся через тригонометрические и гиперболические функции.
- •§ Эллиптические интегралы. Введение.
- •II. . Этим интегралом мы и займемся в следующем параграфе. §. Приведение интеграла к каноническому виду.
- •§. Эллиптические интегралы.
- •§. Интегралы, которые не могут быть выражены, через элементарные функции (не берущиеся интегралы ).
- •4. Интегральные синус и косинус: .
- •Элементы элементарной математики
- •Формулы сокращенного умножения. Метод интервалов решения дробно-рациональных (и не только!) неравенств.
- •Системы двух и трех линейных уравнений. Совместимость, определенность, неопределенность. Метод Гаусса исключения неизвестных.
- •Многочлены. Теорема Безу и ее следствия. Рациональные корни уравнений.
- •Степенная, показательная, логарифмическая функции. Основные свойства и графики. Решение показательных и логарифмических уравнений и неравенств.
- •Тригонометрические функции углового и числового аргументов. Определение и свойства. Обратные тригонометрические функции. Формулы двойного и половинного аргумента. Формулы приведения.
- •Решение простейших (и не только!) тригонометрических уравнений и неравенств.
- •Построение графиков функций с помощью элементарных движений. Общая схема исследование функций с помощью производной.
- •Метод сечений при решении задач с параметром. Задачи, связанные с исследованием функций.
- •§10. Векторы, операции над ними. Скалярное, векторное и смешанное произведение. Проекции векторов. Примеры использования векторов в задачах физики.
- •§11. Уравнение прямой на плоскости в векторной форме.
- •Варианты контрольных работ
- •Дополнение 1 Вещественные числа
- •Сечения множества рациональных чисел
- •Перерізи множини раціональних чисел.
- •Сравнение сечений множества рациональных чисел
- •Порівняння перерізів множними раціональних чисел.
- •Теоремы об аппроксимации вещественных чисел рациональными
- •Теореми про апроксимацію дійсних чисел раціональними.
- •Теорема Дедекинда (непрерывность множества вещественных чисел)
- •Теорема Дедекінда (непрерівність множини дійсних чисел).
- •Сложение вещественных чисел
- •Додавання дійсних чисел
- •Произведение вещественных чисел
- •Дополнение 2 Исчисление высказываний
- •II. Правила построения формул ив.
- •III. Правила вывода ив
- •IV. Аксиомы ив.
- •V.Вывод
- •VI .Интерпретации
- •Математическая логика. Mathematical Logic Математична логіка
- •Формальный язык (аксиоматическая теория) и метаязык
- •Знаки, знакосочетания, алфавит.
- •Знаки, знакосполучення, алфавіт
- •Операции над словами
- •Операції над словами.
- •Выражения формального языка
- •Вирази формальної мови
- •Структурные знаки формального языка
- •Структурні знаки формальної мови
- •Переменные и константы (постоянные)
- •Зминні та сталі (константи)
- •Дополнение 3 Теорема про граничный переход в равенстве.
- •Дополнение 4 § теория пределов
- •Непрерывность и дифференцируемость
§ Гиперболические функции.
Каждая тригонометрическая функция имеет свой гиперболический аналог.
.
.
,
.
На рисунке слева
приводятся графики гиперболических
синуса (сплошная линия) и косинуса
(пунктирная линия). Тонкой пунктирной
линией построен график функции
и симметричные ему относительно оси
абсцисс и оси ординат.
На рисунке справа
приводятся графики гиперболических
тангенса (сплошная линия) и котангенса
(пунктирная линия). Тонкой пунктирной
линией построен график функций
.
Для всех введенных гиперболических функций ( для y = ch x отдельно для х > 0 и отдельно для x < 0) существуют обратные функции.
Найдем обратные функции к гиперболическим функциям:
1.
.
2.
(
)
.
Получили две однозначные ветви обратной функции.
3.
=
( если
).
4.
( если
).
5.
Из 3.
и 4. :
.
Ниже приводятся графики обратных гиперболических функций
Слева приведены графики функций обратных гиперболическому синусу ( сплошной линией) и косинусу (пунктирной линией), причем во втором случае приводятся обе ветви одна выше а другая ниже оси абсцисс .
Справа приведены графики функций обратных гиперболическому тангенсу ( сплошной линией) и котангенсу (пунктирной линией) .
§. Равномерная непрерывность
Def.
Функция
называется равномерно непрерывной на
множестве Х, если
.
Из определения равномерной непрерывности функции на множестве следует, что функция непрерывна в каждой точке этого множества, но не наоборот.
Примеры:
1.
.
Функция
-
непрерывна на
.
Однако
,
т.е.
не является равномерно непрерывной на
промежутке
.
2.
,
Функция
- непрерывна на
.
Но, если положить
то получим:
,
и
при этом:
.
Из
этого делаем заключение о том, что
функция
не является равномерно непрерывной
на
.
Т Кантора (о равномерной непрерывности). Если функция непрерывна на замкнутом промежутке то она равномерно непрерывна на нём.
∆ Пусть
функция
непрерывна на замкнутом промежутке
.
Тогда :
.
Множество
всех дельта-окрестностей
точек промежутка образует открытое
покрытие замкнутого промежутка
.
Выделив из этого покрытия конечное
подпокрытие получим :
- конечное подпокрытие.
Положим
. Тогда :
.
▲
Колебание функции.
Def.
Колебанием функции на D(
f ) называется
,
причем
.
Def.
Колебанием функции
на множестве М называется:
.
Очевидно при сужении множества колебание функции не увеличивается.
Рассмотрим
т.е.
колебание функции при уменьшении
не увеличивается и ограничено снизу.
Значит:
Величина
называется колебанием функции
в точке .
Т.
Функция
-
непрерывна в точке x
= a тогда и
только тогда когда
.
∆ Пусть
-
непрерывна в точке x
= a.
т.е.
.
▲
Если
то
величина
'называется
финальным колебанием функции
в т. x = a.
Т.
Функция
имеет конечный предел в точке x
= a тогда и
только тогда, когда ее финальное колебание
в точке x = a
равно 0 т.е.
.
∆▲