
- •Государственное образовательное учреждение высшего
- •Лекция 13. Уравновешивание звеньев.
- •1.2. Механизмы современной техники.
- •1.3. Задачи и основные методы теории механизмов и машин.
- •План лекции
- •1. 5. 2 Классификация кинематических пар по числу связей.
- •1.5.3 Степень подвижности кинематической цепи.
- •5. 7 Избыточные связи.
- •План лекции
- •1. 5. 6 Принцип образования механизмов по Ассуру.
- •1. 5. 7 Избыточные связи
- •1. 5. 8 Классификация механизмов по общим свойствам.
- •1.5.9 Виды механизмов.
- •Тема 2
- •2. 2 Графический метод кинематического анализа - метод кинематических диаграмм.
- •2. 2. 1 Определение положений звеньев, построение траекторий точек и кинематических диаграмм.
- •2. 2. 2 Графическое дифференцирование.
- •2.2.3 Графическое интегрирование.
- •2.3 Графоаналитический метод кинематического анализа - метод планов скоростей и ускорений.
- •2.3.1 Построение планов скоростей и их свойства.
- •2.3.2 Построение планов ускорений и их свойства.
- •2.3 Графоаналитический метод кинематического анализа - метод планов скоростей и ускорений.
- •2.3.1 Построение планов скоростей.
- •2.3.2 Построение планов ускорений.
- •2. 4 Аналитические методы кинематического анализа.
- •2.5 Метод преобразования координат.
- •2.5.1. Определение положений точек в незамкнутых кинематических цепях.
- •2.5.2 Определение положений точек в замкнутых кинематических цепях.
- •2.5.3 Определение положения точек в пространственных кинематических цепях.
- •2.5.4 Уравнения преобразования координат для кинематических пар.
- •2.5.5 Определение положения захвата пространственного манипулятора в неподвижной системе координат.
- •2.5.3 Определение положений точек звеньев в пространственных кинематических цепях.
- •2. 14 Преобразование координатных систем.
- •2.5.4 Уравнения преобразования координат для конкретных кинематических пар,
- •5. 5 Определение положения захвата пространственного манипулятора в неподвижной системе координат.
- •Лекция 8
- •2.5.6 Определение положения точек в плоских механизмах
- •2.5.7 Определение положений точек, скоростей и ускорений
- •2.5.6 Определение положений точек в плоских механизмах векторным методом.
- •2.5.7 Определение угловых скоростей и ускорений звеньев и линейных скоростей и ускорений точек плоских механизмов. Аналоги скоростей и ускорений.
- •3.1. Введение в динамику машин.
- •3.2.1 Классификация сил.
- •3.1 Введение в динамику машин.
- •3.2. Силы, действующие в машинах.
- •3.2.1 Классификация сил.
- •2. Силы движущие и силы сопротивления.
- •3.2.2 Определение сил инерции.
- •3.3. Реакции в кинематических парах.
- •3.4.Кинетостатический расчет механизмов.
- •3.4.1 Задачи кинетостатики механизмов.
- •3.4.2 Условия статической определимости групп звеньев.
- •3.4.3 Графоаналитический метод кинетостатического расчета групп второго класса.
- •2. Группа 2-го вида
- •3.4.4 Аналитический метод кинетостатического
- •3.4.5 Кинетостатика ведущего звена.
- •3.4.4 Аналитический метод кинетостатического
- •Лекция 12.
- •3.5.1 Трение в поступательных кинематических
- •3.5.2 Трение во вращательной кинематической паре.
- •3. 6. Передача работы и мощности. Кпд машин. Коэффициент потерь.
- •3.6.1 Кпд поступательной кинематической пары.
- •3.6.3. Определение кпд механизма.
- •3.6.4 Кпд соединенных машин.
- •Лекция 13.
- •3.7.1 Общие условия уравновешивание вращающихся масс.
- •3.7.2 Статическое уравновешивание.
- •Уравновешивание в общем случае или динамическое уравновешивание.
- •3.7.4 Статическая и динамическая балансировка вращающихся масс.
- •Лекция 14
- •3.7.6. Уравновешивание шарнирного четырехзвенника.
- •3.8. Движение машин под действием заданных сил.
- •3.8.1. Режимы движения машины.
- •3.8.2. Характеристика внешних сил.
- •3.8.5 Определение приведенных моментов инерции и моментов сил кривошипно – ползунного механизма.
- •3.8.8 Уравнения движения в дифференциальной форме.
- •Разрешим уравнение (3.57) относительно углового ускорения
- •Лекция 17.
- •3.8.13 Определение момента инерции маховика.
- •Лекция 18.
- •3.8.16 Уравнения движения машины с учетом упругости звеньев.
- •4. 2. Основные и дополнительные условия синтеза. Ограничения при синтезе.
- •4. 3. Методы оптимального синтеза.
- •4. 4. Синтез механизмов на основании заданной целевой функции.
- •4. 5. Интерполяционный метод синтеза механизмов.
- •Лекция 20.
- •4.6. Синтез механизмов методом наилучшего приближения функций.
- •4.7. Метод квадратичного приближения.
- •4.6. Синтез механизмов методом наилучшего приближения функций.
- •4.7. Метод квадратичного приближения.
- •Тема 5 Синтез плоских рычажных механизмов (4 часа)
- •5.2 Синтез четырехзвенного кривошипно-ползунного коромыслового механизма по трем положениям аналитическим методом.
- •5.3 Синтез четырехзвенного кривошипно-коромыслового механизма по двум крайним положениям коромысла, коэффициенту изменения средней скорости и допускаемому углу давления.
- •План лекции
- •5.4.2 Синтез кривошипно-ползунного механизма.
- •5.4.З Синтез кулисного механизма.
- •Тема 6.
- •9.2. Фазы движения толкателя
- •9.3. Обоснование выбора закона движения
- •Лекция 24.
- •6.5 Синтез кулачковых механизмов.
- •6.6 Проектирование по кинематическим параметрам. Построение профиля кулачка при поступательном движении толкателя.
- •6.4 Проектирование по динамическим параметрам. Определение текущих углов давления. Аналог скорости
- •Лекция 25
- •6.10. Графическое определение текущих углов давления.
- •6.11 Аналитический метод определения основных размеров кулачкового механизма по заданному допускаемое углу давления.
- •6.12. Силовой расчет кулачкового механизма.
- •Глава 7. Синтез зубчатых зацеплений. (12 часов).
- •7.2. Основная теорема зацепления. Полюс зацепления. Центроиды колес.
- •7.3. Цилиндрическая эвольвентная зубчатая передача..
- •7.1 Виды зубчатых механизмов
- •7.2. Основная теорема зацепления. Полюс зацепления. Центроиды колес.
- •7.3. Цилиндрическая эвольвентная зубчатая передача.
- •Окружность
- •Окружность
- •5. Эвольвента - кривая без перегибо
- •7.5 Элементы и свойства эвольвентного зацепления
- •7.6. Коэффициент перекрытия
- •Лекция 28.
- •7.8. Внутреннее зацепление (рис.7.9)
- •7.9. Реечное зацепление (рис.7.10)
- •7.10. Изготовление зубчатых колес.
- •Лекция 29.
- •7.14. Толщина зуба по произвольной окружности.Условие отсутствия заострения
- •7.15. Условие отсутствия подрезания
- •Лекция 30
- •7.17 Проектирование зубчатых передач. Выбор коэффициента смещения.
- •7.18 Косозубая цилиндрическая передача.
- •Лекция 31
- •7.21 Передачи с перекрещивающимися осями.
- •7.21.1 Винтовая передача.
- •7.21.2 Червячная передача.
- •Тема 8. Синтез механизмов с подвижными осями. Лекция 32.
- •8.1 Планетарные и дифференциальные механизмы.
- •8.1 Планетарные и дифференциальные механизмы.
- •Тема 9. Основы теории машин - автоматов. ( 4 часа)
- •9.1.2. Управление от копиров.
- •9.1.3. Следящий привод.
- •9.2. Виды манипуляторов и промышленных роботов.
- •Промышленные роботы
- •9.3. Рабочий объем манипулятора и классификация движений захвата
- •9.4. Влияние расположения кинематических пар манипулятора на его маневренность
- •9.5 Структурный синтез манипуляторов
- •9.6 Зоны обслуживания, угол и коэффициент
- •Список литературы.
6.12. Силовой расчет кулачкового механизма.
При силовом расчете кулачкового механизма в основу берутся данные, полученные для эталонного механизма. В качестве эталонного применяется внецентровый механизм с поступательно движущимся заостренным толкателем, имеющим две прямолинейные направляющие, расположенные по обеим сторонам кулачка (рис. 6.23).
Пусть толкатель нагружен силой Q, которая слагается из силы полезного сопротивления, усилия пружины, силы инерции и силы веса. Кроме того, введем следующие обозначения:
,
,
-
нормальные реакции кулачка и направляющих
на толкатель.
,
,
-
соответствующие силы трения.
f
и f’
- коэффициенты трения соответственно
между толкателем и кулачком и между
толкателем и направляющими.
-
угол давления.
Рис. 6.2З Схема к определению сил в кулачковом механизме.
Располагая,
как указано на рис.
6.23
координатные оси и учитывая, что
;
составляем
уравнения равновесия сил, действующих
на толкатель:
(1)
(2)
где
;
Из
(1):
,
(3)
Из
(2):
.
(4)
Исключая из этих уравнений (N1 + N2), получим:
откуда
а) при = 90 (cos = 0, sin = 1), Fn >> Q
а) при = 0 (cos = 1, sin = 0), Fn Q
Мгновенный К.П.Д. всего кулачкового механизма определяется как отношение мощности сил полезных сопротивлений О к мощности вращающего момента М, приложенного к кулачку
где V и скорости соответственно толкателя и кулачка в рассматриваемый момент времени.
Глава 7. Синтез зубчатых зацеплений. (12 часов).
Лекция 26.
План лекции
7.1. Виды зубчатых механизмов.
7.2. Основная теорема зацепления. Полюс зацепления. Центроиды колес.
7.3. Цилиндрическая эвольвентная зубчатая передача..
7.1 Виды зубчатых механизмов
Зубчатые механизмы предназначены для передачи вращательного движения от одного вала к другому. Цилиндрические - передают вращение между параллельными валами. Они получили очень широкое распространение в машиностроения благодаря большой надежности и точности в воспроизведения заданного передаточного отношения. Могут передавать большие нагрузки и достаточно просто изготавливаются. Зуб - это выступ на звене для передачи движения посредством взаимодействия с соответствующим выступом другого звена.
Зубчатое звено – звено, имеющее один или несколько зубьев.
Зубчатое колесо - зубчатое звено с замкнутой системой зубьев, обеспечивающее непрерывное движение другого звена.
Зубчатая передача - трехзвенный механизм; в котором два сдвижных звена являются зубчатыми колесами образующими с неподвижным звеном вращательную или поступательную пару,
Цилиндрические передачи классифицируют:
1. По пространственному расположению - на внешние; внутренние и реечные (рис. 7.1).
2. По форме зуба - на прямо- и косозубые (рис. 7.1). У перв.чх линия зуба параллельна оси колеса», у вторых - расположена под углом.
3. По боковой поверхности - на эвольвентные, зацепление Новикова (боковая поверхность очерчена по дуге окружности) и др.
4. По передаточному отношению.
Передаточное
отношение
-
это отношение угловой скорости ведущего
зубчатого колеса к угловой скорости,
ведомого зубчатого колеса.U1=
-
- для внешнего зацепления;
U1=
-
для внутреннего.
Передаточное число - отношение числа зубьев колеса к числу зубьев шестерни.
Колесо - зубчатое колесо передачи с большим числом зубьев.
Шестерня - колесо с меньшим числом зубьев.
Различают
передачи с положительным и отрицательным
передаточным отношением, с U>
1 (редукторы)
и U
<1
(мультипликаторы),
с U=const
и U
const
(некруглые колеса).