
- •Государственное образовательное учреждение высшего
- •Лекция 13. Уравновешивание звеньев.
- •1.2. Механизмы современной техники.
- •1.3. Задачи и основные методы теории механизмов и машин.
- •План лекции
- •1. 5. 2 Классификация кинематических пар по числу связей.
- •1.5.3 Степень подвижности кинематической цепи.
- •5. 7 Избыточные связи.
- •План лекции
- •1. 5. 6 Принцип образования механизмов по Ассуру.
- •1. 5. 7 Избыточные связи
- •1. 5. 8 Классификация механизмов по общим свойствам.
- •1.5.9 Виды механизмов.
- •Тема 2
- •2. 2 Графический метод кинематического анализа - метод кинематических диаграмм.
- •2. 2. 1 Определение положений звеньев, построение траекторий точек и кинематических диаграмм.
- •2. 2. 2 Графическое дифференцирование.
- •2.2.3 Графическое интегрирование.
- •2.3 Графоаналитический метод кинематического анализа - метод планов скоростей и ускорений.
- •2.3.1 Построение планов скоростей и их свойства.
- •2.3.2 Построение планов ускорений и их свойства.
- •2.3 Графоаналитический метод кинематического анализа - метод планов скоростей и ускорений.
- •2.3.1 Построение планов скоростей.
- •2.3.2 Построение планов ускорений.
- •2. 4 Аналитические методы кинематического анализа.
- •2.5 Метод преобразования координат.
- •2.5.1. Определение положений точек в незамкнутых кинематических цепях.
- •2.5.2 Определение положений точек в замкнутых кинематических цепях.
- •2.5.3 Определение положения точек в пространственных кинематических цепях.
- •2.5.4 Уравнения преобразования координат для кинематических пар.
- •2.5.5 Определение положения захвата пространственного манипулятора в неподвижной системе координат.
- •2.5.3 Определение положений точек звеньев в пространственных кинематических цепях.
- •2. 14 Преобразование координатных систем.
- •2.5.4 Уравнения преобразования координат для конкретных кинематических пар,
- •5. 5 Определение положения захвата пространственного манипулятора в неподвижной системе координат.
- •Лекция 8
- •2.5.6 Определение положения точек в плоских механизмах
- •2.5.7 Определение положений точек, скоростей и ускорений
- •2.5.6 Определение положений точек в плоских механизмах векторным методом.
- •2.5.7 Определение угловых скоростей и ускорений звеньев и линейных скоростей и ускорений точек плоских механизмов. Аналоги скоростей и ускорений.
- •3.1. Введение в динамику машин.
- •3.2.1 Классификация сил.
- •3.1 Введение в динамику машин.
- •3.2. Силы, действующие в машинах.
- •3.2.1 Классификация сил.
- •2. Силы движущие и силы сопротивления.
- •3.2.2 Определение сил инерции.
- •3.3. Реакции в кинематических парах.
- •3.4.Кинетостатический расчет механизмов.
- •3.4.1 Задачи кинетостатики механизмов.
- •3.4.2 Условия статической определимости групп звеньев.
- •3.4.3 Графоаналитический метод кинетостатического расчета групп второго класса.
- •2. Группа 2-го вида
- •3.4.4 Аналитический метод кинетостатического
- •3.4.5 Кинетостатика ведущего звена.
- •3.4.4 Аналитический метод кинетостатического
- •Лекция 12.
- •3.5.1 Трение в поступательных кинематических
- •3.5.2 Трение во вращательной кинематической паре.
- •3. 6. Передача работы и мощности. Кпд машин. Коэффициент потерь.
- •3.6.1 Кпд поступательной кинематической пары.
- •3.6.3. Определение кпд механизма.
- •3.6.4 Кпд соединенных машин.
- •Лекция 13.
- •3.7.1 Общие условия уравновешивание вращающихся масс.
- •3.7.2 Статическое уравновешивание.
- •Уравновешивание в общем случае или динамическое уравновешивание.
- •3.7.4 Статическая и динамическая балансировка вращающихся масс.
- •Лекция 14
- •3.7.6. Уравновешивание шарнирного четырехзвенника.
- •3.8. Движение машин под действием заданных сил.
- •3.8.1. Режимы движения машины.
- •3.8.2. Характеристика внешних сил.
- •3.8.5 Определение приведенных моментов инерции и моментов сил кривошипно – ползунного механизма.
- •3.8.8 Уравнения движения в дифференциальной форме.
- •Разрешим уравнение (3.57) относительно углового ускорения
- •Лекция 17.
- •3.8.13 Определение момента инерции маховика.
- •Лекция 18.
- •3.8.16 Уравнения движения машины с учетом упругости звеньев.
- •4. 2. Основные и дополнительные условия синтеза. Ограничения при синтезе.
- •4. 3. Методы оптимального синтеза.
- •4. 4. Синтез механизмов на основании заданной целевой функции.
- •4. 5. Интерполяционный метод синтеза механизмов.
- •Лекция 20.
- •4.6. Синтез механизмов методом наилучшего приближения функций.
- •4.7. Метод квадратичного приближения.
- •4.6. Синтез механизмов методом наилучшего приближения функций.
- •4.7. Метод квадратичного приближения.
- •Тема 5 Синтез плоских рычажных механизмов (4 часа)
- •5.2 Синтез четырехзвенного кривошипно-ползунного коромыслового механизма по трем положениям аналитическим методом.
- •5.3 Синтез четырехзвенного кривошипно-коромыслового механизма по двум крайним положениям коромысла, коэффициенту изменения средней скорости и допускаемому углу давления.
- •План лекции
- •5.4.2 Синтез кривошипно-ползунного механизма.
- •5.4.З Синтез кулисного механизма.
- •Тема 6.
- •9.2. Фазы движения толкателя
- •9.3. Обоснование выбора закона движения
- •Лекция 24.
- •6.5 Синтез кулачковых механизмов.
- •6.6 Проектирование по кинематическим параметрам. Построение профиля кулачка при поступательном движении толкателя.
- •6.4 Проектирование по динамическим параметрам. Определение текущих углов давления. Аналог скорости
- •Лекция 25
- •6.10. Графическое определение текущих углов давления.
- •6.11 Аналитический метод определения основных размеров кулачкового механизма по заданному допускаемое углу давления.
- •6.12. Силовой расчет кулачкового механизма.
- •Глава 7. Синтез зубчатых зацеплений. (12 часов).
- •7.2. Основная теорема зацепления. Полюс зацепления. Центроиды колес.
- •7.3. Цилиндрическая эвольвентная зубчатая передача..
- •7.1 Виды зубчатых механизмов
- •7.2. Основная теорема зацепления. Полюс зацепления. Центроиды колес.
- •7.3. Цилиндрическая эвольвентная зубчатая передача.
- •Окружность
- •Окружность
- •5. Эвольвента - кривая без перегибо
- •7.5 Элементы и свойства эвольвентного зацепления
- •7.6. Коэффициент перекрытия
- •Лекция 28.
- •7.8. Внутреннее зацепление (рис.7.9)
- •7.9. Реечное зацепление (рис.7.10)
- •7.10. Изготовление зубчатых колес.
- •Лекция 29.
- •7.14. Толщина зуба по произвольной окружности.Условие отсутствия заострения
- •7.15. Условие отсутствия подрезания
- •Лекция 30
- •7.17 Проектирование зубчатых передач. Выбор коэффициента смещения.
- •7.18 Косозубая цилиндрическая передача.
- •Лекция 31
- •7.21 Передачи с перекрещивающимися осями.
- •7.21.1 Винтовая передача.
- •7.21.2 Червячная передача.
- •Тема 8. Синтез механизмов с подвижными осями. Лекция 32.
- •8.1 Планетарные и дифференциальные механизмы.
- •8.1 Планетарные и дифференциальные механизмы.
- •Тема 9. Основы теории машин - автоматов. ( 4 часа)
- •9.1.2. Управление от копиров.
- •9.1.3. Следящий привод.
- •9.2. Виды манипуляторов и промышленных роботов.
- •Промышленные роботы
- •9.3. Рабочий объем манипулятора и классификация движений захвата
- •9.4. Влияние расположения кинематических пар манипулятора на его маневренность
- •9.5 Структурный синтез манипуляторов
- •9.6 Зоны обслуживания, угол и коэффициент
- •Список литературы.
2.5.1. Определение положений точек в незамкнутых кинематических цепях.
Эта задача имеет самостоятельное значение для исследования механизмов манипуляторов и, кроме того. её решение может быть использовано для определения положений точек звеньев любых механизмов о замкнутыми кинематическими цепями.
Рассмотрим произвольную плоскую незамкнутую цепь, имеющую „n" подвижных звеньев (рис. 2.11) соединенных кинематическими парами пятого класса.
С
неподвижным звеном и с каждым подвижным
свяжем свою систему координат
Известны
длины всех звеньев и координаты точки
в системе
,
а также заданы обобщенные координаты
Требуется
определить положение точкиE
в неподвижной системе координат
,
связанной со стойкой.
Рис. 2.11 Положение произвольной точки Е в незамкнутой кинематической цепи.
Для
решения этой задачи произведем
последовательный переход от координат
точки Е в системе
к её координатам в системе
.
На
первом переходе определяем координаты
точки Е в системе .
Уравнения преобразования координат при этом переходе в матричной форме
или
(2.3)
При втором переходе к системе
или
(2.4)
Аналогично записываются уравнения преобразования
координат и на всех оставшихся переходах. Последний переход от системы S1 к. S0,
или
(2.5)
Подставляя уравнение (2. 3 ) и ( 2.4) идалее в (2. 5) получим :
(2.6)
Рассмотрим
схему механизма манипулятора» С
каждым звеном свяжем свою систему
координат. Известны геометрические
размеры звеньев механизма и определены:
обобщенные координаты:
и координаты некоторой точки Е в системе
Требуется
определить положение
точки Е в
неподвижной системе координат
S0.
Для данной схемы в соответствии с формулой (2. 6)
Так
как
и
представим
Полученные выражения могут быть использованы для составления алгоритма, блок-схема которого может быть построена по следующей схеме
2.5.2 Определение положений точек в замкнутых кинематических цепях.
Положение точки в замкнутой кинематической цепи определяете из условия замкнутости контуров.
Для этого выражают координаты точки через параметры правой и ле1 части контура и приравнивают эти параметры.
Рассмотрим
плоскую замкнутую кинематическую цепь
на примере шарнирного четырехзвенника.0
Рис 2. 12 Определение положения точки В в четырехзвенном шарнирном механизме.
С неподвижным и тремя подвижными звеньями свяжем свою систему координат
Известны
длины всех звеньев, координаты точки Е
в системах
и
и обобщенная
координата
.
Требуется определить положение точки Е в системе S0, связанной со стойкой.
Для решения этой задачи произведем последовательный переход от координат точки Е в системе S2 кее координатам в системе S1 ,а затем и в системе S0 через параметры левой части контура ОAB.
Первый переход описывается матричным уравнением
т.
к.
или
(2.8)
Второй
переход
(2.9)
или
Полный
переход от системы
к системе
Положение точки Е через параметры левой части контура ОСВ описывается матричным уравнением
(2.10)
или
(2.11)
Приравнивая правые части формул (2. 11) и (2.8, 2. 9), выраженные
через параметры правой и левой части контура получим:
(2.
12)
После подстановки матриц и действий с ними получим систему двух уравнений
где
Полученная
система уравнений позволяет найти
параметры
и
,
определяющие положение звеньев 2 и 3 в
зависимости от обобщённой координаты
,
а затем и координаты любых точек этих
звеньев.
В общем случае для многозвенной замкнутой кинематической цепи координаты точки Е можно определить из уравнения
(2.14)
Лекция 7
План лекции