- •Предисловие
- •Оглавление
- •Сопротивление материалов – наука о прочности конструкций
- •Глава 1. Основные определения и допущения
- •1.1. Общие принципы расчета на прочность
- •1.2 Понятие о расчетной схеме
- •1.3 Формы тел, рассматриваемые в сопротивлении материалов
- •1.4 Классификация внешних сил
- •1.5 Опорные устройства и их реакции
- •1.6. Основные допущения о свойствах материалов и допущения, связанные с характером деформаций
- •Глава 2. Внутренние силы в поперечных сечениях бруса
- •Раздел 1. Метод сечений
- •1.1. Внутренние силовые факторы
- •Раздел 2. Центральное растяжение-сжатие. Нормальные силы
- •2.1. Нормальные усилия в стержнях стержневой системы
- •2.1.1. Нормальные усилия в стержнях статически определимой системы
- •2.1.2. Нормальные усилия в стержнях статически неопределимой стержневой системы
- •2.1.3 Температурные усилия в стержнях статически неопределимой стержневой системы
- •2.2. Центральное растяжение и сжатие ступенчатого бруса
- •2.2.1. Нормальные усилия возникающие при растяжении и сжатии статически определимого ступенчатого бруса
- •2.2.2. Нормальные усилия, возникающие при растяжении и сжатии статически неопределимого ступенчатого бруса
- •2.2.3 Эпюры нормальных сил при растяжении и сжатии ступенчатого бруса
- •Раздел 3. Кручение. Крутящие моменты
- •3.1. Крутящие моменты, возникающие при кручении статически определимого бруса
- •3.2. Крутящие моменты, возникающие при кручении статически неопределимого бруса
- •3.3 Построение эпюр крутящих моментов
- •Раздел 4. Плоский поперечный изгиб балок. Перерезывающие силы и изгибающие моменты
- •4.1 Перерезывающие силы и изгибающие моменты
- •4.2 Дифференциальные зависимости при изгибе бруса
- •4.3 Построение эпюр изгибающих моментов и перерезывающих сил
- •Глава 3. Напряжения и деформации
- •Раздел 1 Напряженное состояние в точке
- •1.1 Закон парности касательных напряжений
- •1.2. Обобщенный закон Гука
- •1.3 Главные напряжения и главные площадки
- •1.4 Определение компонент напряжений на наклонной площадке. Круговая диаграмма Мора
- •1.5. Определение главных напряжений и угла наклона главных площадок
- •1.6. Определение компонент напряжений на площадке общего положения
- •1.7. Потенциальная энергия деформации
- •Раздел 2. Центральное растяжение и сжатие
- •Историческая справка
- •2.1. Напряжения в поперечных сечениях бруса
- •2.2. Перемещения поперечных сечений бруса
- •2.3. Эпюры нормальных напряжений, деформаций и перемещений при растяжении и сжатии ступенчатого бруса
- •Раздел 3. Сдвиг и срез
- •3.1. Чистый сдвиг
- •3.1.1. Связь между упругими константами материала e, g, и при чистом сдвиге
- •3.2. Касательные напряжения при срезе
- •Раздел 4. Кручение
- •Историческая справка
- •4.1. Кручение бруса круглого и кольцевого поперечных сечений
- •4.1.1. Касательные напряжения в поперечных сечениях бруса
- •4.1.2. Угол поворота поперечного сечения бруса
- •4.1.3. Напряжения в различно ориентированных сечениях и характер разрушения при кручении бруса круглого сечения
- •4.2. Кручение бруса замкнутого тонкостенного сечения
- •4.2.1. Касательные напряжения в поперечных сечениях бруса
- •4.2.2. Угол поворота поперечного сечения бруса
- •4.3. Кручение бруса многосвязного тонкостенного профиля
- •4.4. Кручение бруса прямоугольного сечения
- •4.5. Кручение бруса тонкостенного открытого профиля
- •4.6. Кручение бруса незамкнутого криволинейного профиля переменной толщины
- •4.7. Кручение бруса незамкнутого тонкостенного поперечного сечения, состоящего из нескольких участков различной толщины
- •4.8. Эпюры касательных напряжений, относительных и абсолютных углов закручивания
- •Раздел 5. Плоский прямой изгиб бруса
- •Историческая справка
- •5.1. Нормальные напряжения при чистом изгибе бруса
- •5.2. Нормальные и касательные напряжения при поперечном изгибе бруса. Формула Журавского
- •5.3. Анализ напряженного состояния при поперечном изгибе бруса
- •5.4. Нормальные и касательные напряжения при поперечном изгибе балок тонкостенного профиля
- •5.5. Центр изгиба балки несимметричного тонкостенного профиля
- •5.6. Дифференциальное уравнение упругой линии при поперечном изгибе
- •5.7. Энергетический метод определения перемещений Максвелла‑Мора
- •5.8. Графоаналитический метод определения прогиба балки методом Верещагина
- •5.9. Расслоение эпюр
- •Раздел 6 Косой изгиб прямого бруса
- •6.1. Напряжения относительно главных центральных осей сечения
- •6.2. Напряжения относительно произвольной взаимноперпендикулярной пары центральных осей сечения
- •Раздел 7. Концентрация напряжений
- •7.1. Концентрация напряжений круглого отверстия
- •7.2. Концентрация напряжений эллиптического отверстия
- •7.3. Концентрация напряжений прямоугольного выреза со скругленными углами
- •Раздел 8 Коэффициент интенсивности напряжений
- •Глава 4. Механические свойства конструкционных материалов
- •Раздел 1. Характеристики статической прочности материалов
- •1.1. Диаграммы деформирования. Характеристики материала
- •1.2. Пластические и хрупкие материалы
- •1.3. Закон разгрузки. Явление наклепа
- •1.4. Закон Гука при одноосном растяжении и сжатии
- •1.5. Поперечная деформация. Коэффициент Пуассона
- •Раздел 2 Характеристики сопротивления усталости
- •2.1. Характеристики цикла нагружения
- •2.2. Базовая кривая усталости
- •Раздел 3. Характеристики сопротивления развитию трещины при циклическом нагружении
- •Раздел 4. Характеристики статической трещиностойкости
- •4.1. Характеристики статической трещиностойкости в условиях плоской деформации
- •4.2 Характеристики статической трещиностойкости при плоском напряженном состоянии
- •4.3. Расчетные характеристики статической трещиностойкости
- •Глава 5. Геометрические характеристики плоских сечений
- •1. Статические моменты плоских сечений
- •2. Осевые, центробежный и полярный моменты инерции плоских сечений
- •3. Изменение моментов инерции при параллельном переносе осей
- •4. Изменение моментов инерции при повороте осей координат
- •5. Главные оси и главные моменты инерции. Круг инерции Мора
- •6. Моменты инерции простейших фигур
- •7. Моменты инерции составных сечений
- •Глава 6. Изгиб продольно сжатых стержней
- •Раздел 1. Внецентренное сжатие коротких стержней
- •1.1 Внецентренное сжатие силой, приложенной на одной из главных осей инерции сечения стержня
- •1.2 Внецентренное сжатие силой, которая не находится ни на одной из главных осей инерции сечения стержня
- •Раздел 2. Упругая потеря устойчивости длинных стержней
- •2.1. Упругая потеря устойчивости прямого стержня, нагруженного осевой нагрузкой. Формула Эйлера
- •2.2. Упругая потеря устойчивости стержня, нагруженного осевой нагрузкой с эксцентриситетом
- •2.3. Упругая потеря устойчивости стержня с первоначальной кривизной
- •2.4. Упругая потеря устойчивости стержня, нагруженного осевой и поперечной нагрузками
- •2.4.1. Приближенная формула определения прогиба балки при продольно-поперечном изгибе
- •2.4.2. Дифференциальное уравнение изгибающих моментов при продольно‑поперечном изгибе балки
- •2.5. Энергетический метод определения критической нагрузки
- •2.6. Большие перемещения гибкого стержня
- •Раздел 3. Потеря устойчивости за пределом упругости
- •3.1. Критические напряжения. Пределы применимости формулы Эйлера
- •3.2. Устойчивость стержней за пределом упругости. Модуль Кармана
- •3.3. Формула Ясинского-Тетмайера для определения критических напряжений
- •Глава 7. Статически определимые стержневые системы
- •Историческая справка
- •1. Типы стержневых систем
- •2. Внутренние силовые факторы в сечениях пространственного бруса
- •3. Внутренние силовые факторы в сечениях плоской рамы
- •4. Внутренние силовые факторы в стержнях фермы
- •5. Напряжения в сечениях бруса малой кривизны
- •6. Перемещения сечений пространственного бруса
- •6.1. Потенциальная энергия бруса в общем случае нагружения
- •6.2. Энергетический метод определения перемещений сечений пространственного бруса. Интеграл Мора
- •6.3. Перемещения сечений плоской рамы
- •6.4 Перемещения узлов фермы
- •6.5 Относительные перемещения сечений стержней системы
- •Глава 8. Плоские статически неопределимые стержневые системы
- •1 Кинематический анализ плоских систем
- •2 Метод сил. Канонические уравнения
- •2.1. Внешне статически неопределимые рамы
- •2.2. Внутренне статически неопределимые рамы
- •2.3. Вычисление коэффициентов канонических уравнений
- •2.4. Рациональный выбор основной системы. Использование свойств симметрии при раскрытии статической неопределимости
- •2.5. Последовательность решения статически неопределимых задач
- •3 Перемещения сечений статически неопределимых рам
- •Глава 9. Критерии прочности
- •Раздел 1. Критерии статической прочности
- •1.1 Критерий максимального главного напряжения (Rankine)
- •1.2 Критерий максимальной главной деформации (St. Venant)
- •1.3 Критерий суммарной энергии деформации (Beltramy & Haigh)
- •1.4 Критерий максимальных касательных напряжений (Tresca)
- •1.5 Критерий энергии деформации сдвига (Hencky & VonMises)
- •1.7 Критерий интенсивности напряжений
- •1.8 Критерий Кулона-Мора
- •1.9 Условия текучести при двухосном напряженном состоянии
- •Раздел 2. Критерии сопротивления усталости
- •2.1 Определение приведенных напряжений
- •2.1.1 Приведенные напряжения для элементов с геометрическими концентраторами
- •2.1.2 Приведенное напряжение для продольных стыков крыла
- •2.1.3 Приведенное напряжение для поперечных стыков
- •2.1 Метод «дождевого потока»
- •Раздел 2. Критерии статической трещиностойкости
- •2.1 Энергетический критерий Гриффитса
- •2.2 Критерий разрушения Орована-Ирвина
- •Глава 10 Расчет на прочность
- •Раздел 1 Расчет статической прочности по допускаемым напряжениям
- •1.1 Расчеты на прочность при растяжении и сжатии стержневой системы или ступенчатого бруса
- •1.2 Расчет на прочность при срезе и смятии
- •1.3 Расчет на прочность и жесткость при кручении
- •1.4 Расчет на прочность при изгибе
- •Раздел 2 Расчет статической прочности по предельному состоянию
- •2.1 Расчет на прочность при растяжении сжатии
- •2.2 Расчет на прочность при кручении
- •2.3 Расчет на прочность при изгибе
- •Раздел 3 Расчет на устойчивость
- •3.1 Расчет на устойчивость по аналитическим зависимостям
- •3.2 Расчет на устойчивость по коэффициентам уменьшения основного допускаемого напряжения
- •Литература
1.2 Расчет на прочность при срезе и смятии
Элементы, которыми соединяют различные детали, например, заклепки, штифты, болты (без зазора) в основном рассчитывают на срез. Расчет носит приближенный характер и основан на следующих допущениях:
1) в поперечных сечениях рассматриваемых элементов возникает лишь один силовой фактор – поперечная сила Q;
2) при наличии нескольких одинаковых соединительных элементов каждый из них воспринимает одинаковую долю общей нагрузки, передаваемой соединением;
2) касательные напряжения распределены по сечению равномерно.
Условие прочности выражается формулой:
τср = Q/Fср≤[ τ]ср, где
Q – поперечная сила ( при нескольких i соединительных элементах при передаче силы Pср
Q = Pср/i);
τср – напряжение среза в плоскости рассчитываемого сечения;
Fср – площадь среза;
[τ]ср – допускаемое напряжение на срез.
На смятие, как правило, рассчитывают элементы, которые соединены заклепками, штифтами, болтами. Смятию подвергаются стенки отверстий в зонах установки соединительных элементов. Обычно расчет на смятие выполняют для соединений, соединительные элементы которых рассчитывают на срез.
При расчете на смятие принимают, что силы взаимодействия между соприкасающимися деталями равномерно распределены по поверхности контакта и в каждой точке нормальны к этой поверхности. Силу взаимодействия, принято называть напряжением смятия. Расчет на прочность выполняется по формуле:
σсм=Pсм/(iFсм)≤[σ]см, где
σсм– действующее напряжение смятия;
Pсм– усилие передаваемое соединением;
i – число соединительных элементов;
Fсм – расчетная площадь смятия;
[σ]см – допускаемое напряжение смятия.
Из допущения о характере распределения сил взаимодействия по поверхности контакта следует, что если контакт осуществляется по поверхности полуцилиндра, то расчетная площадь Fсм равна площади проекции поверхности контакта на диаметральную плоскость, т.е. равна диаметру цилиндрической поверхности d на ее высоту δ:
Fсм= d δ
Пример 10.3
Стержни I и II соединены штифтом III и нагружены растягивающими силами (рис. 10.4). Определить размеры d, D, dшт, c, e конструкции, если [σ]р=120 МН/м2, [τ]ср=80 МН/м2, [σ]см=240 МН/м2.
Рисунок 10.4
Решение.
1. Определяем диаметр штифта из условия прочности на срез:
, откуда
Принимаем d=16×10-3 м
2. Определяем диаметр стержня I из условия прочности на растяжение (сечение стержня, ослабленное отверстием для штифта, показано на рис. 10.4б):
, или
, откуда
94,2×10310 d2 – 1920103 d - 30 0
Решив квадратное неравенство, получим d30,810-3 м. Принимаем d=3110-3 м.
3. Определим наружный диаметр стержня II из условия прочности на растяжение, сечения ослабленного отверстием для штифта (рис. 10.4в):
, или
, откуда
94,2103D2-192103D-610
Решив квадратное уравнение, получим D=37,710-3 м. Примем D=3810-3 м.
4. Проверим, достаточна ли толщина стенок стержня II по условию прочности на смятие:
Так как напряжение смятия превышает допустимое напряжение на смятие, то увеличим наружный диаметр стержня так, чтобы выполнялось условие прочности на смятие:
, откуда
Принимаем D=39×10-3 м.
5. Определяем размер c из условия прочности нижней части стержня II на срез:
, откуда
Примем c=24×10-3 м.
6. Определим размер e из условия прочности верхней части стержня I на срез:
, откуда
.
Примем e=6×10-3 м.
Пример 10.4
Проверить прочность заклепочного соединения (рис. 10.5а), если [τ]ср = 100 Мн/м2, [σ]см = 200 Мн/м2, [σ]р = 140 Мн/м2.
Рисунок 10.5
Решение.
Расчет включает проверку прочности заклепок на срез, стенок отверстий в листах и накладках на смятие, а также листов и накладок на растяжение.
Напряжения среза в заклепках определяем по формуле:
В рассматриваемом случае i=9 (число заклепок по одну сторону от стыка), k=2 (двухсрезные заклепки).
Подставляя числовые значения, получим:
τср = 550103 / (92((3,140,022) /4)) = 97,2 Мн/м2
Избыток прочности по срезу заклепок:
Напряжение смятия стенок отверстий определим по формуле:
В заданном соединении площадь смятия стенок отверстий соединяемых листов меньше, чем стенок отверстий в накладках. Следовательно, напряжения смятия для листов больше, чем для накладок, поэтому принимаем δрасч = δ = 16 10-3 м. Подставляя числовые значения, получим:
σсм= 550103 / (91610-32010-3) =191 Мн/м2
Избыток прочности по смятию стенок отверстий:
Для проверки прочности листов на растяжение вычислим напряжения по формуле:
, где
N – нормальная сила в опасном сечении;
Fнетто – площадь сечения нетто, т.е. площадь поперечного сечения листа за вычетом его ослабления отверстиями для заклепок.
Для определения опасного сечения строим эпюру продольных сил для листов (рис. 10.5 г). При построении эпюры воспользуемся допущением о равномерном распределении силы между заклепками. Площади ослабленных сечений разные, поэтому не ясно, какое из них опасное. Производим проверку каждого из ослабленных сечений, которые показаны на рисунке 10.5в.
Сечение I-I
Сечение II-II
Сечение III-III
Опасным оказалось сечение I-I ; напряжение в этом сечении выше допускаемого примерно на 2%.
Проверка накладки аналогична проверки листов. Эпюра продольных сил в накладке показана на рисунке 10.5г. Очевидно, что для накладки опасным является сечение III-III, так как это сечение имеет наименьшую площадь (рис. 10.5д) и в нем возникает наибольшая продольная сила N = 0,5P.
Напряжения в опасном сечении накладки:
Напряжения в опасном сечении накладки выше допускаемого примерно на 3,5%.