
- •Предисловие
- •Оглавление
- •Сопротивление материалов – наука о прочности конструкций
- •Глава 1. Основные определения и допущения
- •1.1. Общие принципы расчета на прочность
- •1.2 Понятие о расчетной схеме
- •1.3 Формы тел, рассматриваемые в сопротивлении материалов
- •1.4 Классификация внешних сил
- •1.5 Опорные устройства и их реакции
- •1.6. Основные допущения о свойствах материалов и допущения, связанные с характером деформаций
- •Глава 2. Внутренние силы в поперечных сечениях бруса
- •Раздел 1. Метод сечений
- •1.1. Внутренние силовые факторы
- •Раздел 2. Центральное растяжение-сжатие. Нормальные силы
- •2.1. Нормальные усилия в стержнях стержневой системы
- •2.1.1. Нормальные усилия в стержнях статически определимой системы
- •2.1.2. Нормальные усилия в стержнях статически неопределимой стержневой системы
- •2.1.3 Температурные усилия в стержнях статически неопределимой стержневой системы
- •2.2. Центральное растяжение и сжатие ступенчатого бруса
- •2.2.1. Нормальные усилия возникающие при растяжении и сжатии статически определимого ступенчатого бруса
- •2.2.2. Нормальные усилия, возникающие при растяжении и сжатии статически неопределимого ступенчатого бруса
- •2.2.3 Эпюры нормальных сил при растяжении и сжатии ступенчатого бруса
- •Раздел 3. Кручение. Крутящие моменты
- •3.1. Крутящие моменты, возникающие при кручении статически определимого бруса
- •3.2. Крутящие моменты, возникающие при кручении статически неопределимого бруса
- •3.3 Построение эпюр крутящих моментов
- •Раздел 4. Плоский поперечный изгиб балок. Перерезывающие силы и изгибающие моменты
- •4.1 Перерезывающие силы и изгибающие моменты
- •4.2 Дифференциальные зависимости при изгибе бруса
- •4.3 Построение эпюр изгибающих моментов и перерезывающих сил
- •Глава 3. Напряжения и деформации
- •Раздел 1 Напряженное состояние в точке
- •1.1 Закон парности касательных напряжений
- •1.2. Обобщенный закон Гука
- •1.3 Главные напряжения и главные площадки
- •1.4 Определение компонент напряжений на наклонной площадке. Круговая диаграмма Мора
- •1.5. Определение главных напряжений и угла наклона главных площадок
- •1.6. Определение компонент напряжений на площадке общего положения
- •1.7. Потенциальная энергия деформации
- •Раздел 2. Центральное растяжение и сжатие
- •Историческая справка
- •2.1. Напряжения в поперечных сечениях бруса
- •2.2. Перемещения поперечных сечений бруса
- •2.3. Эпюры нормальных напряжений, деформаций и перемещений при растяжении и сжатии ступенчатого бруса
- •Раздел 3. Сдвиг и срез
- •3.1. Чистый сдвиг
- •3.1.1. Связь между упругими константами материала e, g, и при чистом сдвиге
- •3.2. Касательные напряжения при срезе
- •Раздел 4. Кручение
- •Историческая справка
- •4.1. Кручение бруса круглого и кольцевого поперечных сечений
- •4.1.1. Касательные напряжения в поперечных сечениях бруса
- •4.1.2. Угол поворота поперечного сечения бруса
- •4.1.3. Напряжения в различно ориентированных сечениях и характер разрушения при кручении бруса круглого сечения
- •4.2. Кручение бруса замкнутого тонкостенного сечения
- •4.2.1. Касательные напряжения в поперечных сечениях бруса
- •4.2.2. Угол поворота поперечного сечения бруса
- •4.3. Кручение бруса многосвязного тонкостенного профиля
- •4.4. Кручение бруса прямоугольного сечения
- •4.5. Кручение бруса тонкостенного открытого профиля
- •4.6. Кручение бруса незамкнутого криволинейного профиля переменной толщины
- •4.7. Кручение бруса незамкнутого тонкостенного поперечного сечения, состоящего из нескольких участков различной толщины
- •4.8. Эпюры касательных напряжений, относительных и абсолютных углов закручивания
- •Раздел 5. Плоский прямой изгиб бруса
- •Историческая справка
- •5.1. Нормальные напряжения при чистом изгибе бруса
- •5.2. Нормальные и касательные напряжения при поперечном изгибе бруса. Формула Журавского
- •5.3. Анализ напряженного состояния при поперечном изгибе бруса
- •5.4. Нормальные и касательные напряжения при поперечном изгибе балок тонкостенного профиля
- •5.5. Центр изгиба балки несимметричного тонкостенного профиля
- •5.6. Дифференциальное уравнение упругой линии при поперечном изгибе
- •5.7. Энергетический метод определения перемещений Максвелла‑Мора
- •5.8. Графоаналитический метод определения прогиба балки методом Верещагина
- •5.9. Расслоение эпюр
- •Раздел 6 Косой изгиб прямого бруса
- •6.1. Напряжения относительно главных центральных осей сечения
- •6.2. Напряжения относительно произвольной взаимноперпендикулярной пары центральных осей сечения
- •Раздел 7. Концентрация напряжений
- •7.1. Концентрация напряжений круглого отверстия
- •7.2. Концентрация напряжений эллиптического отверстия
- •7.3. Концентрация напряжений прямоугольного выреза со скругленными углами
- •Раздел 8 Коэффициент интенсивности напряжений
- •Глава 4. Механические свойства конструкционных материалов
- •Раздел 1. Характеристики статической прочности материалов
- •1.1. Диаграммы деформирования. Характеристики материала
- •1.2. Пластические и хрупкие материалы
- •1.3. Закон разгрузки. Явление наклепа
- •1.4. Закон Гука при одноосном растяжении и сжатии
- •1.5. Поперечная деформация. Коэффициент Пуассона
- •Раздел 2 Характеристики сопротивления усталости
- •2.1. Характеристики цикла нагружения
- •2.2. Базовая кривая усталости
- •Раздел 3. Характеристики сопротивления развитию трещины при циклическом нагружении
- •Раздел 4. Характеристики статической трещиностойкости
- •4.1. Характеристики статической трещиностойкости в условиях плоской деформации
- •4.2 Характеристики статической трещиностойкости при плоском напряженном состоянии
- •4.3. Расчетные характеристики статической трещиностойкости
- •Глава 5. Геометрические характеристики плоских сечений
- •1. Статические моменты плоских сечений
- •2. Осевые, центробежный и полярный моменты инерции плоских сечений
- •3. Изменение моментов инерции при параллельном переносе осей
- •4. Изменение моментов инерции при повороте осей координат
- •5. Главные оси и главные моменты инерции. Круг инерции Мора
- •6. Моменты инерции простейших фигур
- •7. Моменты инерции составных сечений
- •Глава 6. Изгиб продольно сжатых стержней
- •Раздел 1. Внецентренное сжатие коротких стержней
- •1.1 Внецентренное сжатие силой, приложенной на одной из главных осей инерции сечения стержня
- •1.2 Внецентренное сжатие силой, которая не находится ни на одной из главных осей инерции сечения стержня
- •Раздел 2. Упругая потеря устойчивости длинных стержней
- •2.1. Упругая потеря устойчивости прямого стержня, нагруженного осевой нагрузкой. Формула Эйлера
- •2.2. Упругая потеря устойчивости стержня, нагруженного осевой нагрузкой с эксцентриситетом
- •2.3. Упругая потеря устойчивости стержня с первоначальной кривизной
- •2.4. Упругая потеря устойчивости стержня, нагруженного осевой и поперечной нагрузками
- •2.4.1. Приближенная формула определения прогиба балки при продольно-поперечном изгибе
- •2.4.2. Дифференциальное уравнение изгибающих моментов при продольно‑поперечном изгибе балки
- •2.5. Энергетический метод определения критической нагрузки
- •2.6. Большие перемещения гибкого стержня
- •Раздел 3. Потеря устойчивости за пределом упругости
- •3.1. Критические напряжения. Пределы применимости формулы Эйлера
- •3.2. Устойчивость стержней за пределом упругости. Модуль Кармана
- •3.3. Формула Ясинского-Тетмайера для определения критических напряжений
- •Глава 7. Статически определимые стержневые системы
- •Историческая справка
- •1. Типы стержневых систем
- •2. Внутренние силовые факторы в сечениях пространственного бруса
- •3. Внутренние силовые факторы в сечениях плоской рамы
- •4. Внутренние силовые факторы в стержнях фермы
- •5. Напряжения в сечениях бруса малой кривизны
- •6. Перемещения сечений пространственного бруса
- •6.1. Потенциальная энергия бруса в общем случае нагружения
- •6.2. Энергетический метод определения перемещений сечений пространственного бруса. Интеграл Мора
- •6.3. Перемещения сечений плоской рамы
- •6.4 Перемещения узлов фермы
- •6.5 Относительные перемещения сечений стержней системы
- •Глава 8. Плоские статически неопределимые стержневые системы
- •1 Кинематический анализ плоских систем
- •2 Метод сил. Канонические уравнения
- •2.1. Внешне статически неопределимые рамы
- •2.2. Внутренне статически неопределимые рамы
- •2.3. Вычисление коэффициентов канонических уравнений
- •2.4. Рациональный выбор основной системы. Использование свойств симметрии при раскрытии статической неопределимости
- •2.5. Последовательность решения статически неопределимых задач
- •3 Перемещения сечений статически неопределимых рам
- •Глава 9. Критерии прочности
- •Раздел 1. Критерии статической прочности
- •1.1 Критерий максимального главного напряжения (Rankine)
- •1.2 Критерий максимальной главной деформации (St. Venant)
- •1.3 Критерий суммарной энергии деформации (Beltramy & Haigh)
- •1.4 Критерий максимальных касательных напряжений (Tresca)
- •1.5 Критерий энергии деформации сдвига (Hencky & VonMises)
- •1.7 Критерий интенсивности напряжений
- •1.8 Критерий Кулона-Мора
- •1.9 Условия текучести при двухосном напряженном состоянии
- •Раздел 2. Критерии сопротивления усталости
- •2.1 Определение приведенных напряжений
- •2.1.1 Приведенные напряжения для элементов с геометрическими концентраторами
- •2.1.2 Приведенное напряжение для продольных стыков крыла
- •2.1.3 Приведенное напряжение для поперечных стыков
- •2.1 Метод «дождевого потока»
- •Раздел 2. Критерии статической трещиностойкости
- •2.1 Энергетический критерий Гриффитса
- •2.2 Критерий разрушения Орована-Ирвина
- •Глава 10 Расчет на прочность
- •Раздел 1 Расчет статической прочности по допускаемым напряжениям
- •1.1 Расчеты на прочность при растяжении и сжатии стержневой системы или ступенчатого бруса
- •1.2 Расчет на прочность при срезе и смятии
- •1.3 Расчет на прочность и жесткость при кручении
- •1.4 Расчет на прочность при изгибе
- •Раздел 2 Расчет статической прочности по предельному состоянию
- •2.1 Расчет на прочность при растяжении сжатии
- •2.2 Расчет на прочность при кручении
- •2.3 Расчет на прочность при изгибе
- •Раздел 3 Расчет на устойчивость
- •3.1 Расчет на устойчивость по аналитическим зависимостям
- •3.2 Расчет на устойчивость по коэффициентам уменьшения основного допускаемого напряжения
- •Литература
2.1.2 Приведенное напряжение для продольных стыков крыла
Регулярными зонами крыла, долговечность которых определяет долговечность конструкции крыла, являются продольные стыки, к которым можно отнести:
- стыки панелей;
- стыки панелей с поясами лонжеронов;
- стыки стенок с поясами лонжеронов.
На рисунке 9.8 приведен эскиз продольного стыка панелей при помощи стыкового профиля.
Рисунок 9.8
Выделим прямоугольный элемент из панели в окрестрости отверстия для крепежного элемента. По граням выделенного элемента будут действовать нормальные напряжения σz, касательные напряжения τxz, и усилие Pб, действующее на контур отверстия от крепежного элемента. Используя принцип суперпозиции представим нагруженное состояние в окрестности отверстия в виде двух, одно из которых преставляет нагружение отверстия нормальными напряжениями σz, а второе нагружение касательными напряжениями τxz и уравновешивающим усилием Pб, действующим на контур отверстия (рис. 9.9).
Рисунок 9.9
В результате концентрации на контуре отверстия возникает повышенное напряжение σк э, которое можно определить как сумму наибольших напряжений на контуре для двух состояний:
,
где (5)
-
коэффициенты концентрации от нормальных
напряжений и напряжений смятия;
σz – нормальные напряжения;
σсм – напряжения смятия.
Напряжение смятия определяется усилием на крепежный элемент Pб толщиной панели в зоне крепежного отверстия δ и диаметром крепежного отверстия d:
При равномерном распределении усилий по крепежным элементам усилие на болт Pб определяется шагом крепежных отверстий t, числом крепежных элементов на одном шаге n, толщиной панели δ и величиной касательных напряжений τxz:
С достаточной
степенью точности для реальных соединений
и условий нагружения
.
Тогда соотношение (5) после подстановок можно преобразовать к виду:
(6)
В случае одноосного нагружения образца с отверстием напряжением σприв на контуре отверстия в точке возможного зарождения усталостной трещины возникает σк о:
(7)
Приравняем правые части соотношений (6) и (7), и после преобразований получим, что приведенное напряжение равно:
2.1.3 Приведенное напряжение для поперечных стыков
К наиболее часто встречающимся поперечным стыкам верхних и нижних панелей крыла можно отнести:
- поперечные стыки панелей центроплана с панелями консольной части крыла;
- поперечные стыки панелей консольной части крыла с панелями отъемной части крыла.
В конструкции гермофюзеляжа к поперечным стыкам можно отнести:
- продольные (относительно оси фюзеляжа) стыки обшивки фюзеляжа, выполняемые обычно внахлест;
- поперечные (относительно оси фюзеляжа) соединения, выполняемые обычно встык по накладке.
На рисунке 9.10 приведен эскиз поперечного стыка панелей при помощи стыковой накладки с шагом крепежных элементов t и числом крепежных элементов на одном шаге n.
Рисунок 9.10
Выделим прямоугольный элемент из панели в окрестности отверстия для крепежного элемента шириной t/n (рис.9.11а). По граням выделенного элемента будут действовать усилие Pп на подходе к отверстию и усилие Pст после отверстия. Кроме того на контур отверстия будет действовать усилием Pб.
Рисунок 9.11
Используя принцип суперпозиции, представим нагруженное состояние в окрестности отверстия в виде трех, одно из которых преставляет осевое растяжение усилием Pст, второе осевым усилием Pп -Pст и уравновешивающим усилием Pб, действующим на контур отверстия, а третье нагружение распределенными изгибающими моментами mизг, вызванными несоосной передачей усилия с панели на стыковую накладку (рис. 9.11б).
Определим усилие, передаваемое панелью на одном шаге Pп:
При равномерном распределении усилий по крепежным элементам усилие на болт Pб определяется соотношением:
Определим усилие, проходящее за крепежным элементом Pст:
Для определения изгибающих моментов mизг рассмотрим расчетную схему стыка, приведенную на рисунке 9.12. Определим изгибающий момент в сечении по первому ряду крепежных элементов в предположении, что между накладкой и панелью отсутсвует проскальзывание.
Рисунок 9.12
Так как, рассматриваемое сечение (рис. 9.12б) находится в условиях внецентренного растяжения, то изгибающий момент будет равен:
mz=P×e, где
e- расстояние между равнодействующей P и главной центральной осью сечения zc;
P- усилие в панели на единице ширины.
Учитывая, что
и что равнодействующая P
приложена в середине толщины панели в
случае равномерного распределения
напряжений по её толщине, тогда из
рисунка 9.12б:
Определим усилие в панели на единице ширины:
P=z×п
После подстановок, распределенный изгибающий момент будет равен:
В результате концентрации на контуре отверстия возникает повышенное напряжение σк э, которое можно определить как сумму наибольших напряжений на контуре для трех состояний:
,
где (8)
-
коэффициенты концентрации от нормальных
напряжений, напряжений смятия и изгибных
напряжений;
σz – нормальные напряжения;
σсм – напряжения смятия;
σизг – напряжения локального изгиба;
n- число крепежных элементов на одном шаге.
Напряжение смятия определяется усилием на крепежный элемент Pб толщиной панели в зоне крепежного отверстия δ и диаметром крепежного отверстия d:
При равномерном
распределении усилий по крепежным
элементам усилие на болт Pб
определяется шагом крепежных отверстий
t, числом крепежных
элементов на одном шаге n,
толщиной панели δ и величиной
нормальных напряжений, которое действует
за первым крепежным элементом
:
С достаточной
степенью точности для реальных соединений
и условий нагружения
.
Экспериментальными исследованиями
установлено, что
.
Примем, что
,
тогда соотношение (8) после подстановок
можно преобразовать к виду:
(6)
В случае одноосного нагружения образца с отверстием напряжением σприв на контуре отверстия в точке возможного зарождения усталостной трещины возникает σк о:
(7)
Приравняем правые части соотношений (6) и (7), и после преобразований получим, что приведенное напряжение равно: