
- •Предисловие
- •Оглавление
- •Сопротивление материалов – наука о прочности конструкций
- •Глава 1. Основные определения и допущения
- •1.1. Общие принципы расчета на прочность
- •1.2 Понятие о расчетной схеме
- •1.3 Формы тел, рассматриваемые в сопротивлении материалов
- •1.4 Классификация внешних сил
- •1.5 Опорные устройства и их реакции
- •1.6. Основные допущения о свойствах материалов и допущения, связанные с характером деформаций
- •Глава 2. Внутренние силы в поперечных сечениях бруса
- •Раздел 1. Метод сечений
- •1.1. Внутренние силовые факторы
- •Раздел 2. Центральное растяжение-сжатие. Нормальные силы
- •2.1. Нормальные усилия в стержнях стержневой системы
- •2.1.1. Нормальные усилия в стержнях статически определимой системы
- •2.1.2. Нормальные усилия в стержнях статически неопределимой стержневой системы
- •2.1.3 Температурные усилия в стержнях статически неопределимой стержневой системы
- •2.2. Центральное растяжение и сжатие ступенчатого бруса
- •2.2.1. Нормальные усилия возникающие при растяжении и сжатии статически определимого ступенчатого бруса
- •2.2.2. Нормальные усилия, возникающие при растяжении и сжатии статически неопределимого ступенчатого бруса
- •2.2.3 Эпюры нормальных сил при растяжении и сжатии ступенчатого бруса
- •Раздел 3. Кручение. Крутящие моменты
- •3.1. Крутящие моменты, возникающие при кручении статически определимого бруса
- •3.2. Крутящие моменты, возникающие при кручении статически неопределимого бруса
- •3.3 Построение эпюр крутящих моментов
- •Раздел 4. Плоский поперечный изгиб балок. Перерезывающие силы и изгибающие моменты
- •4.1 Перерезывающие силы и изгибающие моменты
- •4.2 Дифференциальные зависимости при изгибе бруса
- •4.3 Построение эпюр изгибающих моментов и перерезывающих сил
- •Глава 3. Напряжения и деформации
- •Раздел 1 Напряженное состояние в точке
- •1.1 Закон парности касательных напряжений
- •1.2. Обобщенный закон Гука
- •1.3 Главные напряжения и главные площадки
- •1.4 Определение компонент напряжений на наклонной площадке. Круговая диаграмма Мора
- •1.5. Определение главных напряжений и угла наклона главных площадок
- •1.6. Определение компонент напряжений на площадке общего положения
- •1.7. Потенциальная энергия деформации
- •Раздел 2. Центральное растяжение и сжатие
- •Историческая справка
- •2.1. Напряжения в поперечных сечениях бруса
- •2.2. Перемещения поперечных сечений бруса
- •2.3. Эпюры нормальных напряжений, деформаций и перемещений при растяжении и сжатии ступенчатого бруса
- •Раздел 3. Сдвиг и срез
- •3.1. Чистый сдвиг
- •3.1.1. Связь между упругими константами материала e, g, и при чистом сдвиге
- •3.2. Касательные напряжения при срезе
- •Раздел 4. Кручение
- •Историческая справка
- •4.1. Кручение бруса круглого и кольцевого поперечных сечений
- •4.1.1. Касательные напряжения в поперечных сечениях бруса
- •4.1.2. Угол поворота поперечного сечения бруса
- •4.1.3. Напряжения в различно ориентированных сечениях и характер разрушения при кручении бруса круглого сечения
- •4.2. Кручение бруса замкнутого тонкостенного сечения
- •4.2.1. Касательные напряжения в поперечных сечениях бруса
- •4.2.2. Угол поворота поперечного сечения бруса
- •4.3. Кручение бруса многосвязного тонкостенного профиля
- •4.4. Кручение бруса прямоугольного сечения
- •4.5. Кручение бруса тонкостенного открытого профиля
- •4.6. Кручение бруса незамкнутого криволинейного профиля переменной толщины
- •4.7. Кручение бруса незамкнутого тонкостенного поперечного сечения, состоящего из нескольких участков различной толщины
- •4.8. Эпюры касательных напряжений, относительных и абсолютных углов закручивания
- •Раздел 5. Плоский прямой изгиб бруса
- •Историческая справка
- •5.1. Нормальные напряжения при чистом изгибе бруса
- •5.2. Нормальные и касательные напряжения при поперечном изгибе бруса. Формула Журавского
- •5.3. Анализ напряженного состояния при поперечном изгибе бруса
- •5.4. Нормальные и касательные напряжения при поперечном изгибе балок тонкостенного профиля
- •5.5. Центр изгиба балки несимметричного тонкостенного профиля
- •5.6. Дифференциальное уравнение упругой линии при поперечном изгибе
- •5.7. Энергетический метод определения перемещений Максвелла‑Мора
- •5.8. Графоаналитический метод определения прогиба балки методом Верещагина
- •5.9. Расслоение эпюр
- •Раздел 6 Косой изгиб прямого бруса
- •6.1. Напряжения относительно главных центральных осей сечения
- •6.2. Напряжения относительно произвольной взаимноперпендикулярной пары центральных осей сечения
- •Раздел 7. Концентрация напряжений
- •7.1. Концентрация напряжений круглого отверстия
- •7.2. Концентрация напряжений эллиптического отверстия
- •7.3. Концентрация напряжений прямоугольного выреза со скругленными углами
- •Раздел 8 Коэффициент интенсивности напряжений
- •Глава 4. Механические свойства конструкционных материалов
- •Раздел 1. Характеристики статической прочности материалов
- •1.1. Диаграммы деформирования. Характеристики материала
- •1.2. Пластические и хрупкие материалы
- •1.3. Закон разгрузки. Явление наклепа
- •1.4. Закон Гука при одноосном растяжении и сжатии
- •1.5. Поперечная деформация. Коэффициент Пуассона
- •Раздел 2 Характеристики сопротивления усталости
- •2.1. Характеристики цикла нагружения
- •2.2. Базовая кривая усталости
- •Раздел 3. Характеристики сопротивления развитию трещины при циклическом нагружении
- •Раздел 4. Характеристики статической трещиностойкости
- •4.1. Характеристики статической трещиностойкости в условиях плоской деформации
- •4.2 Характеристики статической трещиностойкости при плоском напряженном состоянии
- •4.3. Расчетные характеристики статической трещиностойкости
- •Глава 5. Геометрические характеристики плоских сечений
- •1. Статические моменты плоских сечений
- •2. Осевые, центробежный и полярный моменты инерции плоских сечений
- •3. Изменение моментов инерции при параллельном переносе осей
- •4. Изменение моментов инерции при повороте осей координат
- •5. Главные оси и главные моменты инерции. Круг инерции Мора
- •6. Моменты инерции простейших фигур
- •7. Моменты инерции составных сечений
- •Глава 6. Изгиб продольно сжатых стержней
- •Раздел 1. Внецентренное сжатие коротких стержней
- •1.1 Внецентренное сжатие силой, приложенной на одной из главных осей инерции сечения стержня
- •1.2 Внецентренное сжатие силой, которая не находится ни на одной из главных осей инерции сечения стержня
- •Раздел 2. Упругая потеря устойчивости длинных стержней
- •2.1. Упругая потеря устойчивости прямого стержня, нагруженного осевой нагрузкой. Формула Эйлера
- •2.2. Упругая потеря устойчивости стержня, нагруженного осевой нагрузкой с эксцентриситетом
- •2.3. Упругая потеря устойчивости стержня с первоначальной кривизной
- •2.4. Упругая потеря устойчивости стержня, нагруженного осевой и поперечной нагрузками
- •2.4.1. Приближенная формула определения прогиба балки при продольно-поперечном изгибе
- •2.4.2. Дифференциальное уравнение изгибающих моментов при продольно‑поперечном изгибе балки
- •2.5. Энергетический метод определения критической нагрузки
- •2.6. Большие перемещения гибкого стержня
- •Раздел 3. Потеря устойчивости за пределом упругости
- •3.1. Критические напряжения. Пределы применимости формулы Эйлера
- •3.2. Устойчивость стержней за пределом упругости. Модуль Кармана
- •3.3. Формула Ясинского-Тетмайера для определения критических напряжений
- •Глава 7. Статически определимые стержневые системы
- •Историческая справка
- •1. Типы стержневых систем
- •2. Внутренние силовые факторы в сечениях пространственного бруса
- •3. Внутренние силовые факторы в сечениях плоской рамы
- •4. Внутренние силовые факторы в стержнях фермы
- •5. Напряжения в сечениях бруса малой кривизны
- •6. Перемещения сечений пространственного бруса
- •6.1. Потенциальная энергия бруса в общем случае нагружения
- •6.2. Энергетический метод определения перемещений сечений пространственного бруса. Интеграл Мора
- •6.3. Перемещения сечений плоской рамы
- •6.4 Перемещения узлов фермы
- •6.5 Относительные перемещения сечений стержней системы
- •Глава 8. Плоские статически неопределимые стержневые системы
- •1 Кинематический анализ плоских систем
- •2 Метод сил. Канонические уравнения
- •2.1. Внешне статически неопределимые рамы
- •2.2. Внутренне статически неопределимые рамы
- •2.3. Вычисление коэффициентов канонических уравнений
- •2.4. Рациональный выбор основной системы. Использование свойств симметрии при раскрытии статической неопределимости
- •2.5. Последовательность решения статически неопределимых задач
- •3 Перемещения сечений статически неопределимых рам
- •Глава 9. Критерии прочности
- •Раздел 1. Критерии статической прочности
- •1.1 Критерий максимального главного напряжения (Rankine)
- •1.2 Критерий максимальной главной деформации (St. Venant)
- •1.3 Критерий суммарной энергии деформации (Beltramy & Haigh)
- •1.4 Критерий максимальных касательных напряжений (Tresca)
- •1.5 Критерий энергии деформации сдвига (Hencky & VonMises)
- •1.7 Критерий интенсивности напряжений
- •1.8 Критерий Кулона-Мора
- •1.9 Условия текучести при двухосном напряженном состоянии
- •Раздел 2. Критерии сопротивления усталости
- •2.1 Определение приведенных напряжений
- •2.1.1 Приведенные напряжения для элементов с геометрическими концентраторами
- •2.1.2 Приведенное напряжение для продольных стыков крыла
- •2.1.3 Приведенное напряжение для поперечных стыков
- •2.1 Метод «дождевого потока»
- •Раздел 2. Критерии статической трещиностойкости
- •2.1 Энергетический критерий Гриффитса
- •2.2 Критерий разрушения Орована-Ирвина
- •Глава 10 Расчет на прочность
- •Раздел 1 Расчет статической прочности по допускаемым напряжениям
- •1.1 Расчеты на прочность при растяжении и сжатии стержневой системы или ступенчатого бруса
- •1.2 Расчет на прочность при срезе и смятии
- •1.3 Расчет на прочность и жесткость при кручении
- •1.4 Расчет на прочность при изгибе
- •Раздел 2 Расчет статической прочности по предельному состоянию
- •2.1 Расчет на прочность при растяжении сжатии
- •2.2 Расчет на прочность при кручении
- •2.3 Расчет на прочность при изгибе
- •Раздел 3 Расчет на устойчивость
- •3.1 Расчет на устойчивость по аналитическим зависимостям
- •3.2 Расчет на устойчивость по коэффициентам уменьшения основного допускаемого напряжения
- •Литература
Раздел 2. Упругая потеря устойчивости длинных стержней
Впервые эта задача была поставлена и решена великим математиком Л. Эйлером в середине XVIII века. Подход, разработанный Эйлером, позволяет рассмотреть упругую потерю устойчивости следующих типов стержней:
- прямые стержни, нагруженные осевой нагрузкой;
- стержни, нагруженные осевой нагрузкой с эксцентриситетом;
- стержни с первоначальным прогибом;
- стержни, нагруженные осевой и поперечной нагрузками.
Рассматриваются длинные гибкие стержни, изготовленные из однородного, изотропного и упругого материала. При анализе поведения сжатых длинных стержней определяют либо величину критической нагрузки, при которой ось стержня переходит от прямолинейной формы к криволинейной, либо определяют величины напряжений, которые возникают при совместном действии осевой и поперечной нагрузки.
2.1. Упругая потеря устойчивости прямого стержня, нагруженного осевой нагрузкой. Формула Эйлера
Рассмотрим длинный упругий стержень с шарнирно закрепленными краями нагруженный осевым сжатием. При достижении осевой нагрузки критического значения Ркр первоначально прямолинейная форма стержня изменится на устойчивую криволинейную форму (рис. 6.4).
Рисунок 6.4
Если прогибы стержня малы, то приближенное дифференциальное уравнение его оси будет иметь такой же вид, как и при поперечном изгибе бруса:
Примем
,
получим линейное, однородное
дифференциальное уравнение:
Общий интеграл уравнения:
Константы А и В определим из граничных условий:
y(0) = 0, y(l) = 0.
Удовлетворив первому условию, получим B = 0, а из второго условия:
A sin αl = 0
Так как A ≠ 0, то:
sin αl = 0
Решение уравнения:
αl = n π, где n = 1, 2, ……m.
Подставим выражение α, получим:
,
или
Полученная формула определения критической нагрузки носит название формулы Эйлера. Следует отметить, что выпучивание стержня происходит в сторону наименьшей изгибной жесткости EI, если отсутствует специальные опорные устройства, препятствующие выпучиванию стержня. Поэтому в формулу Эйлера необходимо подставить минимальный, главный центральный момент инерции поперечного сечения стержня Imin.
Формулу Эйлера принято записывать в виде:
,
где
Imin- минимальный главный центральный момент инерции сечения;
μ - коэффициент приведения длины, учитывающий характер закрепления концов стержня.
Произведение μl называют приведенной длиной стержня. Коэффициент приведения длины:
где
n - число полуволн синусоиды, по которой изогнется стержень при упругой потере устойчивости. Число n можно оценить на основании анализа деформированного состояния стержня, которое определяется характером закрепления стержня.
Наиболее часто встречающиеся расчетные схемы стержней и соответствующие им значения μ приведены на рисунке 6.5.
Рисунок 6.5
Уравнение упругой линии имеет вид:
Таким образом, упругая линия стержня представляет собой кривую в виде n полуволн.
Анализируя формулу Эйлера можно заметить, что на величину критической силы из всех механических характеристик материала влияет лишь модуль упругости Е. Поскольку модуль упругости для всех марок сталей практически одинаковый, то для повышения запаса устойчивости использование высокопрочных сталей нецелесообразно. Устойчивость стержня определяется также величиной минимального момента инерции сечения Imin, поэтому нет смысла выбирать сечения, у которого минимальный момент инерции сечения значительно отличается от максимального значения, например, швеллер, двутавр. Рациональны те сечения, которые равноустойчивы во всех направлениях и обладают большим моментом инерции при наименьшей площади. С этой точки зрения более рационально кольцевое сечение по сравнению со сплошным круглым сечением, коробчатое по сравнению со сплошным квадратным.