- •20.06.2012 Г. (протокол № 10)
- •11.06.2012 Г. (протокол № 10)
- •Введение
- •1. Основные определения, методы и принципы механики материалов
- •1.1. Задачи, цель и предмет механики материалов
- •1.2. Краткая история развития науки о механике материалов
- •1.3. Расчетная схема. Типовые формы элементов
- •1.4. Внешние силы и их классификация
- •1.5. Основные гипотезы и принципы механики материалов
- •1.6. Контрольные вопросы
- •2. Внутренние силы и усилия. Метод сечений
- •2.1. Понятие о внутренних силах и напряжениях
- •2.2. Внутренние усилия
- •2.3. Выражение внутренних усилий через внешние силы
- •2.4. Контрольные вопросы
- •3. Механические характеристики материалов
- •3.1. Испытание материалов на растяжение
- •3.2. Пластическое и хрупкое разрушение материалов
- •3.3. Концентрация напряжений
- •3.4. Расчеты элементов конструкций (сооружений) на прочность по допускаемым напряжениям и нагрузкам. Коэффициент запаса прочности
- •3.5. Контрольные вопросы
- •4. Растяжение и сжатие
- •4.1. Деформации при растяжении и сжатии
- •4.2. Напряжения при растяжении и сжатии
- •4.3. Абсолютная и относительная деформации. Закон Гука. Коэффициент Пуассона
- •4.4. Условия прочности и жесткости
- •4.5. Потенциальная энергия упругой деформации
- •4.6. Пример расчета
- •4.7. Статически неопределимые системы
- •4.7.1. Определение монтажных напряжений, вызванных технологическими неточностями
- •4.7.2. Определение температурных напряжений
- •4.8. Задачи для самостоятельного решения
- •4.9. Контрольные вопросы
- •5. Геометрические характеристики поперечных сечений бруса
- •5.1. Статические моменты площади сечения
- •5.2. Определение центра тяжести сечения
- •5.3. Осевой, центробежный и полярный моменты инерции сечения. Общие свойства
- •5.4. Изменение моментов инерции при параллельном переносе и повороте осей
- •5.5. Главные оси и главные моменты инерции
- •5.6. Вычисление главных моментов инерции и определение положения главных центральных осей. Радиусы инерции
- •5.7. Моменты инерции простых сечений
- •5.8. Окружность инерции Мора
- •5.9. Моменты сопротивления сечений
- •5.10. Пример расчета
- •5.11. Задачи для самостоятельного решения
- •5.12. Контрольные вопросы
- •6. Сдвиг
- •6.1. Основные понятия о деформации сдвига. Абсолютный и относительный сдвиг
- •6.2. Внутренние усилия при деформации сдвига. Напряжения при сдвиге. Закон Гука при сдвиге. Модуль сдвига
- •6.3. Связь между модулями упругости e и g для изотропного тела
- •6.4. Расчет на прочность при сдвиге. Потенциальная энергия деформации при сдвиге
- •6.5. Практические примеры деформации сдвига – расчет заклепочных и болтовых соединений на срез и смятие.
- •6.6. Пример расчета
- •6.7. Контрольные вопросы
- •7.2. Закон парности касательных напряжений
- •7.3. Главные площадки и главные напряжения
- •7.4. Линейное напряженное состояние
- •7.5. Плоское напряженное состояние
- •7.6. Круг напряжений Мора
- •7.7. Объемное напряженное состояние
- •7.8. Деформированное состояние
- •7.9. Обобщенный закон Гука
- •7.10. Потенциальная энергия деформации
- •7.11. Пример расчета
- •7.12. Контрольные вопросы
- •8. Теория прочности
- •8.1. Назначение и сущность теорий прочности. Эквивалентное напряженное состояние и эквивалентное напряжение
- •8.2. Критерий наибольших нормальных напряжений (первая теория прочности)
- •8.3. Критерий наибольших линейных деформаций (вторая теория прочности)
- •8.4. Критерий наибольших касательных напряжений (третья теория прочности)
- •8.5. Критерий удельной потенциальной энергии формоизменения (четвертая теория прочности)
- •8.6. Теория прочности Мора
- •8.7. Пример расчета
- •8.8. Задачи для самостоятельного решения
- •8.9. Контрольные вопросы
- •9. Изгиб
- •9.1. Общие сведения об изгибе балок. Виды изгиба. Чистый изгиб. Поперечный изгиб. Допущения
- •9.2. Внутренние силовые факторы при изгибе. Нормальные напряжения при изгибе. Эпюры напряжений
- •9.3. Построение эпюр изгибающего момента м и поперечной силы q при изгибе
- •9.4. Дифференциальные зависимости при изгибе. Контроль правильности построения эпюр
- •9.5. Касательные напряжения при изгибе. Эпюры напряжений
- •9.6. Условия прочности при изгибе по нормальным и касательным напряжениям
- •9.7. Рациональные формы поперечного сечения балок
- •9.8. Главные напряжения при изгибе
- •9.9. Деформации при изгибе. Угол поворота и прогиб сечения. Дифференциальное уравнение изогнутой оси балки
- •9.10. Способы определения перемещений при изгибе
- •С помощью интеграла Мора
- •Верещагина
- •9.11. Балки переменного сечения. Определение деформаций
- •, Откуда ;
- •, Откуда .
- •9.12. Расчет статически неопределимых балок.
- •Промежуточного шарнира
- •9.13. Пример расчета
- •9.14. Контрольные вопросы
- •10.2. Угол закручивания. Главные напряжения. Потенциальная энергия упругой деформации при кручении
- •10.3. Расчет на прочность и жесткость круглого и кольцевого поперечного сечения. Расчет валов по заданной мощности и частоте вращения
- •10.4. Статически неопределимые задачи на кручение
- •10.5. Расчет цилиндрических винтовых пружин с малым шагом витков
- •10.6. Пример расчета
- •10.7. Задачи для самостоятельного решения
- •10.8. Контрольные вопросы
- •11. Сложное сопротивление
- •11.1. Особенности расчета брусьев при сложном сопротивлении
- •11.2. Косой изгиб, основные понятия. Нормальные напряжения в поперечных сечениях бруса. Нахождение опасного сечения
- •11.3. Положение нейтральной оси и опасных точек
- •11.4. Внецентренное растяжение и сжатие бруса. Нормальные
- •11.5. Нейтральная ось, ее уравнение и свойства
- •11.6. Положение опасных точек. Условие прочности
- •11.7. Понятие о ядре сечения при внецентренном растяжении
- •11.8. Изгиб с кручением пространственного вала
- •11.9. Определение положения опасного сечения и диаметра вала с использованием третьей и четвертой теорий прочности
- •11.10. Пример расчета
- •11.11. Контрольные вопросы
- •12.2. Критическая сила. Формула Эйлера. Влияние закрепления концов стержня на величину критической силы
- •12.3. Пределы применимости формулы Эйлера. Потеря устойчивости при напряжениях, превышающих предел пропорциональности. Формула Ясинского
- •12.4. Расчеты сжатых стержней на устойчивость при помощи коэффициента уменьшения основного допускаемого напряжения на сжатие
- •12.5. Выбор материалов и рациональной формы поперечных сечений сжатых стержней
- •12.7. Пример расчета
- •12.9. Задачи для самостоятельного решения
- •12.10. Контрольные вопросы
- •13. Динамические нагружения
- •13.1. Виды динамических нагрузок. Учет сил инерции. Критическая скорость вращения вала
- •13.2. Элементарная теория удара. Динамический коэффициент. Продольный и поперечный удар
- •13.3. Удар при кручении. Защита приборов и оборудования от ударов. Определение напряжений при ударном воздействии
- •13.4. Пример расчета
- •13.5. Задачи для самостоятельного решения
- •13.6. Контрольные вопросы
- •Приложения
- •Двутавры стальные горячекатаные (по гост 8239–89)
- •Швеллеры стальные горячекатаные (по гост 8240–89)
- •Уголки стальные горячекатаные равнополочные (по гост 8509–86)
- •Уголки стальные горячекатаные неравнополочные (по гост 8510–86)
- •Коэффициент снижения основного допускаемого напряжения φ при продольном изгибе
2.2. Внутренние усилия
Спроектируем все внутренние силы, действующие в поперечном сечении стержня, на координатные оси и найдем моменты их относительно этих осей.
Крутящий момент – сумма моментов всех внутренних сил, действующих в поперечном сечении стержня, относительно его оси. Мкр > 0, если при взгляде со стороны внешней нормали он совершает вращение по часовой стрелке.
Изгибающие моменты Му и Мх – сумма моментов всех внутренних сил, действующих в поперечном сечении стержня, относительно его главных центральных осей у и х соответственно. Му > 0 и Мх > 0, если моменты изгибают стержень так, что его вогнутость располагается со стороны положительной координатной оси х и у соответственно.
Полученные выражения внутренних усилий через внутренние силы называют интегральными зависимостями. Из них нельзя определить внутренние силы, т. е. напряжения σ, τzу и τzx, так как неизвестен закон их распределения по сечению и значение внутренних усилий.
– называется продольной (осевой) силой.
Что касается внутренних усилий, то их всегда можно определить через внешние силы. В статически определимых конструкциях (системах) для этого достаточно воспользоваться условиями равновесия. Если для определения усилий в сечениях элементов условий равновесия недостаточно, то такие конструкции (системы) называются статически неопределимыми.
Следует отметить, что даже при известных внутренних усилиях определить напряжения из полученных интегральных зависимостей нельзя. Поэтому задача вычисления напряжений всегда является статически неопределимой.
2.3. Выражение внутренних усилий через внешние силы
Рассмотрим равновесие одной из частей стержня, например, левой (обычно рассматривается та часть стержня, на которую действует меньшее количество внешних сил).
На левую часть стержня действуют внешние силы F1, F2 и внутренние силы в поперечном сечении 1–1. Так как внутренние усилия являются равнодействующими внутренних сил, то их действие статически эквивалентно действию внутренних сил. Поэтому в сечении 1–1 можно приложить вместо внутренних сил положительные внутренние усилия (рис. 2.3).
Под действием показанных на рисунке сил эта часть стержня находится в равновесии, т. е. для нее должны выполняться шесть уравнений равновесия:
Рис. 2.3. Схема распределения внутренних усилий
в поперечном сечении стержня
Из шести неизвестных усилий только одно проектируется на какую-либо ось или дает момент относительно нее. Поэтому из условий равновесия легко получим:
Из данных формул следует, что:
1) продольная сила N равна алгебраической сумме проекций всех внешних сил, действующих по одну сторону от сечения, на ось стержня. N > 0, если проекция внешней силы направлена от сечения;
2) поперечные силы Qy и Qх равны алгебраической сумме проекций всех внешних сил, действующих по одну сторону от сечения, на оси у и х соответственно. Qу > 0 и Qх > 0, если при взгляде с положительного направления осей х и у соответственно проекция внешней силы вращает стержень относительно сечения по часовой стрелке;
3) изгибающие моменты равны алгебраической сумме моментов всех внешних сил, действующих по одну сторону от сечения, относительно осей y и х соответственно. > 0 и если внешняя сила или момент так изгибают стержень, что вогнутость его располагается со стороны положительных осей х и y соответственно.
4) крутящий момент Мкр равен алгебраической сумме моментов всех внешних сил, действующих по одну сторону от сечения, относительно оси стержня. Мкр > 0, если при взгляде со стороны внешней нормали к сечению стержня внешняя сила или момент совершают вращение по часовой стрелке. Например, в рассматриваемом случае, от действия силы и
Таким образом, в общем случае действия внешних сил на стержень в его сечениях возникают четыре вида усилий: продольная сила (N), поперечные силы (Qy, Qx), крутящий момент (Мкр) и изгибающие моменты (Му, Мх).
Каждый вид усилий вызывает характерную для него деформацию. Напряженно-деформированное состояние бруса, вызванное действием:
1) продольной силы (N), называется растяжением или сжатием;
2) поперечной силы (Q) – сдвигом;
3) крутящим моментом (Мкр) – кручением;
4) изгибающим моментом (Му или Мх) – изгибом.
Все эти виды деформаций называются простыми.
Деформация, вызванная совместным действием двух и более усилий, называется сложной. В таких случаях говорят, что стержень испытывает сложное сопротивление. В расчетной практике наиболее часто встречаются следующие случаи сложного сопротивления.
Поперечный изгиб – деформация, вызванная совместным действием изгибающего момента и поперечной силы.
Пространственный или косой изгиб – деформация, вызванная совместным действием двух изгибающих моментов.
Изгиб с растяжением (сжатием) – деформация, вызванная совместным действием изгибающих моментов и продольной силы.
Изгиб с кручением – деформация, вызванная совместным действием изгибающих и крутящего моментов.