Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
учебник_Механика_материалов.docx
Скачиваний:
338
Добавлен:
27.02.2019
Размер:
5.62 Mб
Скачать

8.6. Теория прочности Мора

В отличие от изложенных выше теорий, теория Мора основывается не на гипотезах, а на экспериментальных данных. Зависимость между прочностными свойствами материала и видом напряженного состояния выводится и обосновывается с использованием кругов напряжений Мора. Для этого выбирается некоторое напряженное состояние, и одновременно увеличиваются его составляющие. Когда напряженное состояние станет предельным, на напряжениях и строится соответствующий им круг Мора. Среднее напряжение не учитывается. Опыт показывает, что ошибка при этом не превышает 10–15 %. Строится ряд таких кругов, соответствующих различным напряженным состояниям (рис. 8.2). Огибающая этих кругов, форма которой зависит от свойств материала, является его механической характеристикой.

Если огибающая предельных кругов Мора построена, то для ответа на вопрос, является ли напряженное состояние, характеризующееся главными напряжениями, предельным, и для оценки прочности материала следует построить для и круг напряжений в опасной точке материала. Прочность будет обеспечена, если он целиком лежит внутри огибающей. Для нахождения коэффициента запаса следует определить, во сколько раз необходимо увеличить и , чтобы круг касался огибающей.

Для построения действительной огибающей предельных кругов Мора потребовалось бы опытным путем исследовать всевозможные напряженные состояния. Это неосуществимая задача, поэтому на практике действительную огибающую заменяют прямыми касательными лишь к двум предельным кругам, соответствующим опытам на одноосное растяжение и сжатие.

Рис. 8.2. Огибающая кругов Мора для различных напряженных

состояний материала

Условие прочности для промежуточного напряженного состояния с главными напряжениями и предельным кругом Мора с центром в точке О3 (рис. 8.3) получим из следующих геометрических соотношений.

Проведем прямые О1М1, О2М2 и О3 М3,соединяющие центры предельных кругов Мора и точки их касания с предельной прямой, а также отрезок BО1 параллельный М1М2. Из подобия ∆О1О2В и ∆О1О3А получим следующие зависимости:

где

Рис. 8.3. Схема для получения условия прочности Мора

Учитывая эти обозначения, преобразуем последнее равенство к виду:

Тогда получим условие прочности по теории Мора:

Если материал одинаково сопротивляется растяжению и сжатию, т. е. , теория прочности Мора совпадает с третьей теорией.

Выводы. Таким образом, разрушение материала может происходить путем отрыва одной части от другой и путем среза. Как правило, разрушение путем отрыва происходит хрупко, без заметных остаточных деформаций. Разрушение путем среза сопровождается пластическими деформациями. Поэтому первую и вторую теории можно применять для оценки прочности хрупких материалов, а третью и четвертую – пластических. Теория Мора позволяет учитывать разное сопротивление материала растяжению и сжатию.

8.7. Пример расчета

Задача 1. В опасной точке нагруженной детали напряженное состояние оказалось таким, как указано на схеме (рис. 8.4). Проверить прочность детали по третьей теории прочности, если [σ] = 160 МПа.

Рис. 8.4. Схема опасной точки

нагруженной детали

Решение.

Задача 2. В опасной точке нагруженной детали напряженное состояние оказалось таким, как указано на схеме (рис. 8.5). Проверить прочность материала по третьей и четвертой теориям прочности, если σр = σсж и [σ] = 160 МПа.

Рис. 8.5. Схема опасной точки

нагруженной детали

Решение.

.

Задача 3. В опасной точке нагруженной детали напряженное состояние оказалось таким, как указано на схеме (рис. 8.6). Проверить прочность материала по четвертой теории прочности, если [σ] = 90  МПа.

Решение.

Рис. 8.6. Схема опасной точки

нагруженной детали