
- •20.06.2012 Г. (протокол № 10)
- •11.06.2012 Г. (протокол № 10)
- •Введение
- •1. Основные определения, методы и принципы механики материалов
- •1.1. Задачи, цель и предмет механики материалов
- •1.2. Краткая история развития науки о механике материалов
- •1.3. Расчетная схема. Типовые формы элементов
- •1.4. Внешние силы и их классификация
- •1.5. Основные гипотезы и принципы механики материалов
- •1.6. Контрольные вопросы
- •2. Внутренние силы и усилия. Метод сечений
- •2.1. Понятие о внутренних силах и напряжениях
- •2.2. Внутренние усилия
- •2.3. Выражение внутренних усилий через внешние силы
- •2.4. Контрольные вопросы
- •3. Механические характеристики материалов
- •3.1. Испытание материалов на растяжение
- •3.2. Пластическое и хрупкое разрушение материалов
- •3.3. Концентрация напряжений
- •3.4. Расчеты элементов конструкций (сооружений) на прочность по допускаемым напряжениям и нагрузкам. Коэффициент запаса прочности
- •3.5. Контрольные вопросы
- •4. Растяжение и сжатие
- •4.1. Деформации при растяжении и сжатии
- •4.2. Напряжения при растяжении и сжатии
- •4.3. Абсолютная и относительная деформации. Закон Гука. Коэффициент Пуассона
- •4.4. Условия прочности и жесткости
- •4.5. Потенциальная энергия упругой деформации
- •4.6. Пример расчета
- •4.7. Статически неопределимые системы
- •4.7.1. Определение монтажных напряжений, вызванных технологическими неточностями
- •4.7.2. Определение температурных напряжений
- •4.8. Задачи для самостоятельного решения
- •4.9. Контрольные вопросы
- •5. Геометрические характеристики поперечных сечений бруса
- •5.1. Статические моменты площади сечения
- •5.2. Определение центра тяжести сечения
- •5.3. Осевой, центробежный и полярный моменты инерции сечения. Общие свойства
- •5.4. Изменение моментов инерции при параллельном переносе и повороте осей
- •5.5. Главные оси и главные моменты инерции
- •5.6. Вычисление главных моментов инерции и определение положения главных центральных осей. Радиусы инерции
- •5.7. Моменты инерции простых сечений
- •5.8. Окружность инерции Мора
- •5.9. Моменты сопротивления сечений
- •5.10. Пример расчета
- •5.11. Задачи для самостоятельного решения
- •5.12. Контрольные вопросы
- •6. Сдвиг
- •6.1. Основные понятия о деформации сдвига. Абсолютный и относительный сдвиг
- •6.2. Внутренние усилия при деформации сдвига. Напряжения при сдвиге. Закон Гука при сдвиге. Модуль сдвига
- •6.3. Связь между модулями упругости e и g для изотропного тела
- •6.4. Расчет на прочность при сдвиге. Потенциальная энергия деформации при сдвиге
- •6.5. Практические примеры деформации сдвига – расчет заклепочных и болтовых соединений на срез и смятие.
- •6.6. Пример расчета
- •6.7. Контрольные вопросы
- •7.2. Закон парности касательных напряжений
- •7.3. Главные площадки и главные напряжения
- •7.4. Линейное напряженное состояние
- •7.5. Плоское напряженное состояние
- •7.6. Круг напряжений Мора
- •7.7. Объемное напряженное состояние
- •7.8. Деформированное состояние
- •7.9. Обобщенный закон Гука
- •7.10. Потенциальная энергия деформации
- •7.11. Пример расчета
- •7.12. Контрольные вопросы
- •8. Теория прочности
- •8.1. Назначение и сущность теорий прочности. Эквивалентное напряженное состояние и эквивалентное напряжение
- •8.2. Критерий наибольших нормальных напряжений (первая теория прочности)
- •8.3. Критерий наибольших линейных деформаций (вторая теория прочности)
- •8.4. Критерий наибольших касательных напряжений (третья теория прочности)
- •8.5. Критерий удельной потенциальной энергии формоизменения (четвертая теория прочности)
- •8.6. Теория прочности Мора
- •8.7. Пример расчета
- •8.8. Задачи для самостоятельного решения
- •8.9. Контрольные вопросы
- •9. Изгиб
- •9.1. Общие сведения об изгибе балок. Виды изгиба. Чистый изгиб. Поперечный изгиб. Допущения
- •9.2. Внутренние силовые факторы при изгибе. Нормальные напряжения при изгибе. Эпюры напряжений
- •9.3. Построение эпюр изгибающего момента м и поперечной силы q при изгибе
- •9.4. Дифференциальные зависимости при изгибе. Контроль правильности построения эпюр
- •9.5. Касательные напряжения при изгибе. Эпюры напряжений
- •9.6. Условия прочности при изгибе по нормальным и касательным напряжениям
- •9.7. Рациональные формы поперечного сечения балок
- •9.8. Главные напряжения при изгибе
- •9.9. Деформации при изгибе. Угол поворота и прогиб сечения. Дифференциальное уравнение изогнутой оси балки
- •9.10. Способы определения перемещений при изгибе
- •С помощью интеграла Мора
- •Верещагина
- •9.11. Балки переменного сечения. Определение деформаций
- •, Откуда ;
- •, Откуда .
- •9.12. Расчет статически неопределимых балок.
- •Промежуточного шарнира
- •9.13. Пример расчета
- •9.14. Контрольные вопросы
- •10.2. Угол закручивания. Главные напряжения. Потенциальная энергия упругой деформации при кручении
- •10.3. Расчет на прочность и жесткость круглого и кольцевого поперечного сечения. Расчет валов по заданной мощности и частоте вращения
- •10.4. Статически неопределимые задачи на кручение
- •10.5. Расчет цилиндрических винтовых пружин с малым шагом витков
- •10.6. Пример расчета
- •10.7. Задачи для самостоятельного решения
- •10.8. Контрольные вопросы
- •11. Сложное сопротивление
- •11.1. Особенности расчета брусьев при сложном сопротивлении
- •11.2. Косой изгиб, основные понятия. Нормальные напряжения в поперечных сечениях бруса. Нахождение опасного сечения
- •11.3. Положение нейтральной оси и опасных точек
- •11.4. Внецентренное растяжение и сжатие бруса. Нормальные
- •11.5. Нейтральная ось, ее уравнение и свойства
- •11.6. Положение опасных точек. Условие прочности
- •11.7. Понятие о ядре сечения при внецентренном растяжении
- •11.8. Изгиб с кручением пространственного вала
- •11.9. Определение положения опасного сечения и диаметра вала с использованием третьей и четвертой теорий прочности
- •11.10. Пример расчета
- •11.11. Контрольные вопросы
- •12.2. Критическая сила. Формула Эйлера. Влияние закрепления концов стержня на величину критической силы
- •12.3. Пределы применимости формулы Эйлера. Потеря устойчивости при напряжениях, превышающих предел пропорциональности. Формула Ясинского
- •12.4. Расчеты сжатых стержней на устойчивость при помощи коэффициента уменьшения основного допускаемого напряжения на сжатие
- •12.5. Выбор материалов и рациональной формы поперечных сечений сжатых стержней
- •12.7. Пример расчета
- •12.9. Задачи для самостоятельного решения
- •12.10. Контрольные вопросы
- •13. Динамические нагружения
- •13.1. Виды динамических нагрузок. Учет сил инерции. Критическая скорость вращения вала
- •13.2. Элементарная теория удара. Динамический коэффициент. Продольный и поперечный удар
- •13.3. Удар при кручении. Защита приборов и оборудования от ударов. Определение напряжений при ударном воздействии
- •13.4. Пример расчета
- •13.5. Задачи для самостоятельного решения
- •13.6. Контрольные вопросы
- •Приложения
- •Двутавры стальные горячекатаные (по гост 8239–89)
- •Швеллеры стальные горячекатаные (по гост 8240–89)
- •Уголки стальные горячекатаные равнополочные (по гост 8509–86)
- •Уголки стальные горячекатаные неравнополочные (по гост 8510–86)
- •Коэффициент снижения основного допускаемого напряжения φ при продольном изгибе
11.4. Внецентренное растяжение и сжатие бруса. Нормальные
напряжения в поперечных сечениях бруса
Внецентренным растяжением (сжатием) называется такой вид деформации, при котором растягивающая (сжимающая) сила параллельна продольной оси бруса, но точка ее приложения не совпадает с центром тяжести поперечного сечения.
Такой тип задач часто применяется в строительстве при расчете колонн зданий. Рассмотрим внецентренное сжатие бруса. Обозначим координаты точки приложения силы F через хF и уF,а главные оси поперечного сечения – через х и у. Ось z направим таким образом, чтобы координаты хF и уF были положительными (рис. 11.7, а)
Если перенести силу F параллельно самой себе из точки С в центр тяжести сечения, то внецентренное сжатие можно представить как сумму трех простых деформаций: сжатия и изгиба в двух плоскостях (рис. 11.7, б). При этом имеем:
,
Напряжения в произвольной точке сечения при внецентренном сжатии, лежащей в первом квадранте, с координатами x и y можно найти исходя из принципа независимости действия сил:
Так как
квадраты
радиусов инерции сечения, то
где x и y – координаты точки сечения, в которой определяется напряжение.
При определении напряжений необходимо учитывать знаки координат как точки приложения внешней силы, так и точки, где определяется напряжение.
Рис.
11.7. Схема бруса при внецентренном сжатии
В случае внецентренного растяжения бруса в полученной формуле следует заменить знак «минус» на знак «плюс».
11.5. Нейтральная ось, ее уравнение и свойства
Обозначим
координаты точек нейтральной оси через
x0
и y0.
Так как в точках нейтральной оси
0,
то приравняем правую часть уравнения
для определения нормальных напряжений
к нулю.
С
учетом того, чтополучим:
Это уравнение прямой, не проходящей через начало координат. Определим отрезки ах и ay, отсекаемые нейтральной осью на координатных осях (рис. 11.8).
Рис. 11.8. Схема для определения отрезков, отсекаемых
нейтральной осью на осях координат
Для этого в уравнении нейтральной оси сначала приравняем нулю у0.
При у0 = 0 получим следующее выражение:
откуда
.
Аналогично при x0 = 0, имеем:
далее
.
Знак «минус» в данных формулах указывает на то, что точка приложения силы C и нейтральная ось всегда расположены по разные стороны от центра тяжести сечения (рис. 11.9, а, б).
Положение нейтральной оси зависит от координат точки приложения нагрузки – чем ближе сила приложена к центру тяжести сечения, тем дальше от него расположена нейтральная ось.
Рис. 11.9. Схема для определения положения нейтральной оси
Если сила F приложена в точке, лежащей на оси у (xF = 0), то нейтральная ось будет параллельна оси x (рис. 11.9, в), так как:
Аналогично и для другой оси.
11.6. Положение опасных точек. Условие прочности
Нейтральная ось делит сечение на две зоны – сжатую и растянутую. Напряжения в точках сечения линейно зависят от расстояния до нейтральной оси. Проведем касательные к контуру сечения, параллельные нейтральной оси, получим точки M и N (см. рис. 11.8). В этих точках возникают максимальные напряжения растяжения и сжатия соответственно. Если материал бруса неодинаково сопротивляется растяжению и сжатию (чугун, бетон, каменная кладка), то необходимо составить два условия прочности: