- •20.06.2012 Г. (протокол № 10)
- •11.06.2012 Г. (протокол № 10)
- •Введение
- •1. Основные определения, методы и принципы механики материалов
- •1.1. Задачи, цель и предмет механики материалов
- •1.2. Краткая история развития науки о механике материалов
- •1.3. Расчетная схема. Типовые формы элементов
- •1.4. Внешние силы и их классификация
- •1.5. Основные гипотезы и принципы механики материалов
- •1.6. Контрольные вопросы
- •2. Внутренние силы и усилия. Метод сечений
- •2.1. Понятие о внутренних силах и напряжениях
- •2.2. Внутренние усилия
- •2.3. Выражение внутренних усилий через внешние силы
- •2.4. Контрольные вопросы
- •3. Механические характеристики материалов
- •3.1. Испытание материалов на растяжение
- •3.2. Пластическое и хрупкое разрушение материалов
- •3.3. Концентрация напряжений
- •3.4. Расчеты элементов конструкций (сооружений) на прочность по допускаемым напряжениям и нагрузкам. Коэффициент запаса прочности
- •3.5. Контрольные вопросы
- •4. Растяжение и сжатие
- •4.1. Деформации при растяжении и сжатии
- •4.2. Напряжения при растяжении и сжатии
- •4.3. Абсолютная и относительная деформации. Закон Гука. Коэффициент Пуассона
- •4.4. Условия прочности и жесткости
- •4.5. Потенциальная энергия упругой деформации
- •4.6. Пример расчета
- •4.7. Статически неопределимые системы
- •4.7.1. Определение монтажных напряжений, вызванных технологическими неточностями
- •4.7.2. Определение температурных напряжений
- •4.8. Задачи для самостоятельного решения
- •4.9. Контрольные вопросы
- •5. Геометрические характеристики поперечных сечений бруса
- •5.1. Статические моменты площади сечения
- •5.2. Определение центра тяжести сечения
- •5.3. Осевой, центробежный и полярный моменты инерции сечения. Общие свойства
- •5.4. Изменение моментов инерции при параллельном переносе и повороте осей
- •5.5. Главные оси и главные моменты инерции
- •5.6. Вычисление главных моментов инерции и определение положения главных центральных осей. Радиусы инерции
- •5.7. Моменты инерции простых сечений
- •5.8. Окружность инерции Мора
- •5.9. Моменты сопротивления сечений
- •5.10. Пример расчета
- •5.11. Задачи для самостоятельного решения
- •5.12. Контрольные вопросы
- •6. Сдвиг
- •6.1. Основные понятия о деформации сдвига. Абсолютный и относительный сдвиг
- •6.2. Внутренние усилия при деформации сдвига. Напряжения при сдвиге. Закон Гука при сдвиге. Модуль сдвига
- •6.3. Связь между модулями упругости e и g для изотропного тела
- •6.4. Расчет на прочность при сдвиге. Потенциальная энергия деформации при сдвиге
- •6.5. Практические примеры деформации сдвига – расчет заклепочных и болтовых соединений на срез и смятие.
- •6.6. Пример расчета
- •6.7. Контрольные вопросы
- •7.2. Закон парности касательных напряжений
- •7.3. Главные площадки и главные напряжения
- •7.4. Линейное напряженное состояние
- •7.5. Плоское напряженное состояние
- •7.6. Круг напряжений Мора
- •7.7. Объемное напряженное состояние
- •7.8. Деформированное состояние
- •7.9. Обобщенный закон Гука
- •7.10. Потенциальная энергия деформации
- •7.11. Пример расчета
- •7.12. Контрольные вопросы
- •8. Теория прочности
- •8.1. Назначение и сущность теорий прочности. Эквивалентное напряженное состояние и эквивалентное напряжение
- •8.2. Критерий наибольших нормальных напряжений (первая теория прочности)
- •8.3. Критерий наибольших линейных деформаций (вторая теория прочности)
- •8.4. Критерий наибольших касательных напряжений (третья теория прочности)
- •8.5. Критерий удельной потенциальной энергии формоизменения (четвертая теория прочности)
- •8.6. Теория прочности Мора
- •8.7. Пример расчета
- •8.8. Задачи для самостоятельного решения
- •8.9. Контрольные вопросы
- •9. Изгиб
- •9.1. Общие сведения об изгибе балок. Виды изгиба. Чистый изгиб. Поперечный изгиб. Допущения
- •9.2. Внутренние силовые факторы при изгибе. Нормальные напряжения при изгибе. Эпюры напряжений
- •9.3. Построение эпюр изгибающего момента м и поперечной силы q при изгибе
- •9.4. Дифференциальные зависимости при изгибе. Контроль правильности построения эпюр
- •9.5. Касательные напряжения при изгибе. Эпюры напряжений
- •9.6. Условия прочности при изгибе по нормальным и касательным напряжениям
- •9.7. Рациональные формы поперечного сечения балок
- •9.8. Главные напряжения при изгибе
- •9.9. Деформации при изгибе. Угол поворота и прогиб сечения. Дифференциальное уравнение изогнутой оси балки
- •9.10. Способы определения перемещений при изгибе
- •С помощью интеграла Мора
- •Верещагина
- •9.11. Балки переменного сечения. Определение деформаций
- •, Откуда ;
- •, Откуда .
- •9.12. Расчет статически неопределимых балок.
- •Промежуточного шарнира
- •9.13. Пример расчета
- •9.14. Контрольные вопросы
- •10.2. Угол закручивания. Главные напряжения. Потенциальная энергия упругой деформации при кручении
- •10.3. Расчет на прочность и жесткость круглого и кольцевого поперечного сечения. Расчет валов по заданной мощности и частоте вращения
- •10.4. Статически неопределимые задачи на кручение
- •10.5. Расчет цилиндрических винтовых пружин с малым шагом витков
- •10.6. Пример расчета
- •10.7. Задачи для самостоятельного решения
- •10.8. Контрольные вопросы
- •11. Сложное сопротивление
- •11.1. Особенности расчета брусьев при сложном сопротивлении
- •11.2. Косой изгиб, основные понятия. Нормальные напряжения в поперечных сечениях бруса. Нахождение опасного сечения
- •11.3. Положение нейтральной оси и опасных точек
- •11.4. Внецентренное растяжение и сжатие бруса. Нормальные
- •11.5. Нейтральная ось, ее уравнение и свойства
- •11.6. Положение опасных точек. Условие прочности
- •11.7. Понятие о ядре сечения при внецентренном растяжении
- •11.8. Изгиб с кручением пространственного вала
- •11.9. Определение положения опасного сечения и диаметра вала с использованием третьей и четвертой теорий прочности
- •11.10. Пример расчета
- •11.11. Контрольные вопросы
- •12.2. Критическая сила. Формула Эйлера. Влияние закрепления концов стержня на величину критической силы
- •12.3. Пределы применимости формулы Эйлера. Потеря устойчивости при напряжениях, превышающих предел пропорциональности. Формула Ясинского
- •12.4. Расчеты сжатых стержней на устойчивость при помощи коэффициента уменьшения основного допускаемого напряжения на сжатие
- •12.5. Выбор материалов и рациональной формы поперечных сечений сжатых стержней
- •12.7. Пример расчета
- •12.9. Задачи для самостоятельного решения
- •12.10. Контрольные вопросы
- •13. Динамические нагружения
- •13.1. Виды динамических нагрузок. Учет сил инерции. Критическая скорость вращения вала
- •13.2. Элементарная теория удара. Динамический коэффициент. Продольный и поперечный удар
- •13.3. Удар при кручении. Защита приборов и оборудования от ударов. Определение напряжений при ударном воздействии
- •13.4. Пример расчета
- •13.5. Задачи для самостоятельного решения
- •13.6. Контрольные вопросы
- •Приложения
- •Двутавры стальные горячекатаные (по гост 8239–89)
- •Швеллеры стальные горячекатаные (по гост 8240–89)
- •Уголки стальные горячекатаные равнополочные (по гост 8509–86)
- •Уголки стальные горячекатаные неравнополочные (по гост 8510–86)
- •Коэффициент снижения основного допускаемого напряжения φ при продольном изгибе
7.8. Деформированное состояние
Под действием внешних сил элементы конструкций и машин изменяют свои первоначальные размеры и форму. Эти изменения характеризуются деформациями и перемещениями тела. Перемещения упругих тел могут быть двух видов: а) перемещения как абсолютного твердого тела; б) перемещения отдельных точек тела, обусловленные деформациями материала. В механике материалов рассматриваются конструкции, в которых возникающие в них перемещения вызваны деформациями тела.
Для исследования деформированного состояния рассмотрим элемент ABCD (рис. 7.11), который после деформации тела перешел в состояние А′B′C′D′. Переход от начального состояния в конечное может быть осуществлен за счет изменения длины сторон (без изменения углов между ними) и за счет изменения углов (без изменения длин).
Пусть до деформации длина элемента АВ была равна dx, а АС – dy, угол между ними равен 90°, и ориентированы они в направлении осей Ох и Оу соответственно (рис. 7.12). Пусть после деформации точки А, В и С заняли положение А′, В′, С′. Перемещения точки А в направлении оси Ох равно u, оси Оу – v, а перемещения точек В и С соответственно:
Рис. 7.11. Схема деформации элемента твердого тела
Тогда линейные деформации элементов АВ и АС определяются в виде:
.
Угловые деформации, т. е. изменение углов и (рис. 7.12), равны:
Рис. 7.12. Схема для определения линейных
и угловых деформаций элемента
Угол сдвига между элементами АВ и АС:
При выводе этих соотношений учитывалось, что перемещения и углы поворота малы, т. е.
Аналогично линейные деформации в направлении оси z и углы сдвига в плоскостях x и определяются по формулам:
Таким образом, деформированное состояние характеризуется величинами , а выражения, связывающие их с компонентами вектора перемещений u, v, w, называются соотношениями Коши.
Часто при исследовании деформаций необходимо определить линейную деформацию в направлении, составляющем угол с осью Ох. Рассмотрим отрезок АВ, который деформируетcя в плоскости хОу и занимает положение (рис. 7.13). Компоненты вектора перемещения точки A в направлении осей Ох и Оу равны u, v и точки В:
Длина отрезка АВ до деформации равна ds, а после деформации:
Тогда деформация отрезка АВ в направлении, определяемом углом , равна:
Учитывая, что
из соотношения Коши получим:
Рис. 7.13. Схема для определения деформации
элемента в направлении угла α
Если заменить на , то эта формула будет полностью совпадать с выражением для . Таким образом, деформация в точке характеризуется тензором деформаций:
Как и тензор напряжений, его можно привести к диагональному виду:
где и – главные деформации.
Аналогично объемная деформация в точке определяется тензором деформаций, который можно представить в общем или диагональном виде:
Вычислим относительно объемную деформацию тела. Для этого рассмотрим элементарный параллелепипед. Размеры сторон его до деформации равны dx, dy, dz. После деформации их размеры равны Начальный объем, а после деформации:
Раскрыв скобки и учитывая, что деформации малы, т. е. пренебрегая произведениями , найдем относительное изменение объема:
Таким образом, является первым инвариантом тензора деформаций.