
- •Формула называется формулой с тесными отрицаниями, если в ней нет связок þ и û, и отрицания относятся только к пропозициональным переменным.
- •§ Кванторы
- •§ Элементы теории множеств
- •§ Операции над множествами
- •§ Операции соответствия между множествами
- •Физические типы соответствий:
- •Def: Множества, равномощные множеству точек, принадлежащих интервалу (0, 1) называются множествами мощности континиум. Пример: Множество вещественных чисел r является множеством мощности континиум.
- •Раздел 2. Предел и непрерывность § грани числовых множеств
- •§ Расположение точек относительно множества
- •§ Предел функции по коши Рассматриваются числовые функции числового аргумента:
- •Запишем еще раз определение предела функции на языке e-d:
- •Внимательно рассмотрев определение предела нетрудно установить, что:
- •Запишем теперь сокращенное определение того, что f (X) ® b при X ® а на языке e-d:
- •Словарик
- •§ Непрерывность функции
- •§ Непрерывность элементарных функций
- •Примеры элементарных функций:
- •§ Предел последовательности
- •Примеры:
- •Раздел 3. Бесконечно малые и др. Величины § определения, терминология и примеры
- •Раздел 4. Непрерывные функции
- •§ Частичные пределы
- •§ Предельный переход в равенствах и неравенствах
- •§ Непрерывность тригонометрических функций
- •Раздел 5. Замечательные пределы § Первый замечательный предел
- •§ Арифметические действия над монотонными функциями.
- •§ Бином Ньютона
- •§ Предел функции по гейне ( по последовательности)
- •§ Второй замечательный предел
- •§ НепрЕрывность показательной функции
- •§ НепрЕрывность логарифмической функции
- •§ Пределы, связанные с показательными, логарифмическими и степенными функциями
- •§ Степенные асимптотические разложения
- •§ Действия над асимптотическими разложениями.
- •§ Асимптотические разложения Маклорена для основных элементарных функций
- •§ Теорема о вложенных промежутках (Коши-Кантора)
- •§ Теорема (Бореля-Лебега) о конечном покрытии.
- •§ Теорема о предельной точке
- •§ Критерий Коши
- •§ Теорема штольца
- •§ Односторонняя непрерывность
- •§ Классификация точек разрыва
- •§ Разрывы монотонной функции.
- •§ Гиперболические функции.
- •§. Равномерная непрерывность
- •Модуль непрерывности.
- •§. Функциональные уравнения
- •Раздел . Дифференциальное исчисление §. Дифференцируемость функции
- •§. Производная
- •§. Дифференциал
- •§. Производные и дифференциалы высших порядков
- •§.Таблица производных высших порядков
- •§. Правило Лейбница (нахождение производных высших порядков для функций заданных в виде произведения)
- •§. Логарифмическая производная
- •§. Высшие производные сложных функций
- •§. Дифференциалы высших порядков
- •§. Высшие производные функций заданных параметрически
- •§. Высшие производные обратных функций
- •§. Инвариантность формы первого дифференциала и неинвариантность формы высших дифференциалов функции
- •Раздел. Основные теоремы о дифференцируемых функциях
- •§. Формула и Многочлен Тейлора
- •§ Формула Тейлора с остаточным членом в форме Пеано
- •§ Остаточный член в форме Шлёмильха – Роша
- •§ Еще несколько полезных разложений.
- •§ Дифференцирование неравенств.
- •§ Необходимое и достаточное условие локального экстремума функции.
- •§. Достаточное условие экстремума.
- •§ Правило Лопиталя раскрытия неопределенностей.
- •§. Пример вычисления предела с помощью формулы Тейлора.
- •§ Выпуклость (вогнутость функций).
- •§ Некоторые замечательные неравенства математического анализа.
- •1. Неравенство Иенсена.
- •§ Применение производных к исследованию свойств функций и построению их графиков. Общая схема.
- •§ Примеры построения графиков функций.
- •§. Мнимая единица. Уявна одиниця. Imaginary Unit.
- •§. Поле комплексных чисел. Поле комплексних чисел.
- •§. Свойства элементов поля.
- •§ Тригонометрическая форма комплексного числа.
- •§ Извлечение корней натуральных степеней из комплексного числа.
- •§ Стереографическая проекция. Сфера Римана.
- •§ Формулы Эйлера.
- •§ Показательная форма записи комплексного числа. Логарифм в комплексной плоскости.
- •§. Функции с комплексными или вещественными аргументами и значениями. Графики. Последовательности.
- •§ Алгебраическая замкнутость поля комплексных чисел. Основная теорема алгебры.
- •§ Теорема Безу.
- •§ Разложение многочлена на множители в множестве комплексных чисел.
- •§. Комплексные корни многочлена с вещественными коэффициентами.
- •§ Решение алгебраических уравнений 1, 2, 3, 4 степени. Формулы Кардано. Метод Феррари.
- •§. Теорема Абеля.
- •§. Еще о функциях комплексного переменного.
- •Раздел. Неопределенный интеграл § Первообразная и неопределенный интеграл.
- •§ Замена переменной в неопределенном интеграле.
- •§. Интегрирование простейших (элементарных) дробей.
- •§. Интегрирование дробно-рациональных функций.
- •§. Метод Остроградского выделения рациональной части интеграла.
- •§. Интегрирование некоторых иррациональностей.
- •§. Интегрирование выражений, рациональным образом выражающихся через тригонометрические и гиперболические функции.
- •§ Эллиптические интегралы. Введение.
- •II. . Этим интегралом мы и займемся в следующем параграфе. §. Приведение интеграла к каноническому виду.
- •§. Эллиптические интегралы.
- •§. Интегралы, которые не могут быть выражены, через элементарные функции (не берущиеся интегралы ).
- •4. Интегральные синус и косинус: .
- •Элементы элементарной математики
- •Формулы сокращенного умножения. Метод интервалов решения дробно-рациональных (и не только!) неравенств.
- •Системы двух и трех линейных уравнений. Совместимость, определенность, неопределенность. Метод Гаусса исключения неизвестных.
- •Многочлены. Теорема Безу и ее следствия. Рациональные корни уравнений.
- •Степенная, показательная, логарифмическая функции. Основные свойства и графики. Решение показательных и логарифмических уравнений и неравенств.
- •Тригонометрические функции углового и числового аргументов. Определение и свойства. Обратные тригонометрические функции. Формулы двойного и половинного аргумента. Формулы приведения.
- •Решение простейших (и не только!) тригонометрических уравнений и неравенств.
- •Построение графиков функций с помощью элементарных движений. Общая схема исследование функций с помощью производной.
- •Метод сечений при решении задач с параметром. Задачи, связанные с исследованием функций.
- •§10. Векторы, операции над ними. Скалярное, векторное и смешанное произведение. Проекции векторов. Примеры использования векторов в задачах физики.
- •§11. Уравнение прямой на плоскости в векторной форме.
- •Варианты контрольных работ
- •Дополнение 1 Вещественные числа
- •Сечения множества рациональных чисел
- •Перерізи множини раціональних чисел.
- •Сравнение сечений множества рациональных чисел
- •Порівняння перерізів множними раціональних чисел.
- •Теоремы об аппроксимации вещественных чисел рациональными
- •Теореми про апроксимацію дійсних чисел раціональними.
- •Теорема Дедекинда (непрерывность множества вещественных чисел)
- •Теорема Дедекінда (непрерівність множини дійсних чисел).
- •Сложение вещественных чисел
- •Додавання дійсних чисел
- •Произведение вещественных чисел
- •Дополнение 2 Исчисление высказываний
- •II. Правила построения формул ив.
- •III. Правила вывода ив
- •IV. Аксиомы ив.
- •V.Вывод
- •VI .Интерпретации
- •Математическая логика. Mathematical Logic Математична логіка
- •Формальный язык (аксиоматическая теория) и метаязык
- •Знаки, знакосочетания, алфавит.
- •Знаки, знакосполучення, алфавіт
- •Операции над словами
- •Операції над словами.
- •Выражения формального языка
- •Вирази формальної мови
- •Структурные знаки формального языка
- •Структурні знаки формальної мови
- •Переменные и константы (постоянные)
- •Зминні та сталі (константи)
- •Дополнение 3 Теорема про граничный переход в равенстве.
- •Дополнение 4 § теория пределов
- •Непрерывность и дифференцируемость
§. Интегрирование простейших (элементарных) дробей.
Элементарными дробями будем называть дроби следующих четырех типов:
I.
;
II.
,
;
III.
;
IV.
,
;
Рассмотрим интегрирование указанных типов рациональных дробей.
Как видно интегралы первых двух типов это табличные интегралы.
I.
;
II.
.
Теперь займемся интегралами третьего и четвертого типов.
III,
IV.
=
=
=
.
Интегрирование первого интеграла не представляет трудностей.
а)
;
б)
.
Интегрирование второго интеграла зависит от показателя степени в знаменателе.
в);
г)
=
=
.
Получено
соотношение:
,
из которого
.
Полученная
формула понижения позволяет выразить
через
и, в конце концов, через
.
Интегрирование указанных четырех типов рациональных дробей показывает, что они могут быть проинтегрированы, и в результате получится сумма рациональных функций ), логарифмов , и арктангенсов. А в общем случае?
§. Интегрирование дробно-рациональных функций.
Рассматривается
задача интегрирования рациональной
дроби:
.
а) Если m>n: т.е. дробь под знаком интеграла неправильная. Производя деление, получим
,
причем:
*.
Интеграл
легко берется (интеграл от полинома);
*.
Интеграл
- является интегралом от правильной
дроби.
б)
Разложим многочлен
на неприводимые множители, т.е. на
линейные множители и квадратные трехчлены
с вещественными коэффициентами без
вещественных корней. Это всегда можно
сделать, если у исходного многочлена
вещественные коэффициенты:
(*)
в) Метод разложения дроби на простейшие.
Теорема:
Правильная дробь
,
у которой знаменатель
представлен в виде (*) всегда может быть
представлена в виде суммы элементарных
дробей вида I, II, III, IV.
Т.е.
.
Учитывая, что в правой части стоят только дроби I, II, III и IV типов, а интегрировать эти дроби мы научились, то задача интегрирования рациональной дроби решена.
Неопределенный интеграл от рациональной функции существует на любом промежутке, где знаменатель интегрируемой дроби не обращается в ноль и выражается через рациональные функции, логарифмы и арктангенсы в конечном виде.
Примеры.
1˚.
Вычислить интеграл
.
Рациональная подынтегральная дробь неправильная, поэтому выделим целую часть.
Т.к.
,
то
и, значит
=
.
Чтобы взять оставшийся интеграл, разложим дробь в сумму простейших:
(A, B, M, N – неопределенные коэффициенты).
*. Две дроби с равными знаменателями равны тогда и только тогда, когда равны их числители.
=
.
* Два многочлена равны тогда и только тогда, когда коэффициенты при одинаковых степенях совпадают. Из этого критерия и последнего равенства получаем:
Получаем
.
2˚.
Вычислить интеграл
.
Разложим подынтегральную дробь в сумму простейших дробей:
,
и можно найти A, B, C, D, E, F как в предыдущей задаче, но…
и,
следовательно:
.
Оставшийся
интеграл это интеграл четвертого типа
и для его взятия можно использовать
полученную выше формулу понижения.
.
В данном случае интеграл четвертого типа оказался не очень сложным. В общем случае, именно интегралы четвертого типа вызывают самые большие, хотя и технические, трудности. Избежать этих трудностей позволяет исключительно остроумный метод Остроградского.