- •Формула называется формулой с тесными отрицаниями, если в ней нет связок þ и û, и отрицания относятся только к пропозициональным переменным.
- •§ Кванторы
- •§ Элементы теории множеств
- •§ Операции над множествами
- •§ Операции соответствия между множествами
- •Физические типы соответствий:
- •Def: Множества, равномощные множеству точек, принадлежащих интервалу (0, 1) называются множествами мощности континиум. Пример: Множество вещественных чисел r является множеством мощности континиум.
- •Раздел 2. Предел и непрерывность § грани числовых множеств
- •§ Расположение точек относительно множества
- •§ Предел функции по коши Рассматриваются числовые функции числового аргумента:
- •Запишем еще раз определение предела функции на языке e-d:
- •Внимательно рассмотрев определение предела нетрудно установить, что:
- •Запишем теперь сокращенное определение того, что f (X) ® b при X ® а на языке e-d:
- •Словарик
- •§ Непрерывность функции
- •§ Непрерывность элементарных функций
- •Примеры элементарных функций:
- •§ Предел последовательности
- •Примеры:
- •Раздел 3. Бесконечно малые и др. Величины § определения, терминология и примеры
- •Раздел 4. Непрерывные функции
- •§ Частичные пределы
- •§ Предельный переход в равенствах и неравенствах
- •§ Непрерывность тригонометрических функций
- •Раздел 5. Замечательные пределы § Первый замечательный предел
- •§ Арифметические действия над монотонными функциями.
- •§ Бином Ньютона
- •§ Предел функции по гейне ( по последовательности)
- •§ Второй замечательный предел
- •§ НепрЕрывность показательной функции
- •§ НепрЕрывность логарифмической функции
- •§ Пределы, связанные с показательными, логарифмическими и степенными функциями
- •§ Степенные асимптотические разложения
- •§ Действия над асимптотическими разложениями.
- •§ Асимптотические разложения Маклорена для основных элементарных функций
- •§ Теорема о вложенных промежутках (Коши-Кантора)
- •§ Теорема (Бореля-Лебега) о конечном покрытии.
- •§ Теорема о предельной точке
- •§ Критерий Коши
- •§ Теорема штольца
- •§ Односторонняя непрерывность
- •§ Классификация точек разрыва
- •§ Разрывы монотонной функции.
- •§ Гиперболические функции.
- •§. Равномерная непрерывность
- •Модуль непрерывности.
- •§. Функциональные уравнения
- •Раздел . Дифференциальное исчисление §. Дифференцируемость функции
- •§. Производная
- •§. Дифференциал
- •§. Производные и дифференциалы высших порядков
- •§.Таблица производных высших порядков
- •§. Правило Лейбница (нахождение производных высших порядков для функций заданных в виде произведения)
- •§. Логарифмическая производная
- •§. Высшие производные сложных функций
- •§. Дифференциалы высших порядков
- •§. Высшие производные функций заданных параметрически
- •§. Высшие производные обратных функций
- •§. Инвариантность формы первого дифференциала и неинвариантность формы высших дифференциалов функции
- •Раздел. Основные теоремы о дифференцируемых функциях
- •§. Формула и Многочлен Тейлора
- •§ Формула Тейлора с остаточным членом в форме Пеано
- •§ Остаточный член в форме Шлёмильха – Роша
- •§ Еще несколько полезных разложений.
- •§ Дифференцирование неравенств.
- •§ Необходимое и достаточное условие локального экстремума функции.
- •§. Достаточное условие экстремума.
- •§ Правило Лопиталя раскрытия неопределенностей.
- •§. Пример вычисления предела с помощью формулы Тейлора.
- •§ Выпуклость (вогнутость функций).
- •§ Некоторые замечательные неравенства математического анализа.
- •1. Неравенство Иенсена.
- •§ Применение производных к исследованию свойств функций и построению их графиков. Общая схема.
- •§ Примеры построения графиков функций.
- •§. Мнимая единица. Уявна одиниця. Imaginary Unit.
- •§. Поле комплексных чисел. Поле комплексних чисел.
- •§. Свойства элементов поля.
- •§ Тригонометрическая форма комплексного числа.
- •§ Извлечение корней натуральных степеней из комплексного числа.
- •§ Стереографическая проекция. Сфера Римана.
- •§ Формулы Эйлера.
- •§ Показательная форма записи комплексного числа. Логарифм в комплексной плоскости.
- •§. Функции с комплексными или вещественными аргументами и значениями. Графики. Последовательности.
- •§ Алгебраическая замкнутость поля комплексных чисел. Основная теорема алгебры.
- •§ Теорема Безу.
- •§ Разложение многочлена на множители в множестве комплексных чисел.
- •§. Комплексные корни многочлена с вещественными коэффициентами.
- •§ Решение алгебраических уравнений 1, 2, 3, 4 степени. Формулы Кардано. Метод Феррари.
- •§. Теорема Абеля.
- •§. Еще о функциях комплексного переменного.
- •Раздел. Неопределенный интеграл § Первообразная и неопределенный интеграл.
- •§ Замена переменной в неопределенном интеграле.
- •§. Интегрирование простейших (элементарных) дробей.
- •§. Интегрирование дробно-рациональных функций.
- •§. Метод Остроградского выделения рациональной части интеграла.
- •§. Интегрирование некоторых иррациональностей.
- •§. Интегрирование выражений, рациональным образом выражающихся через тригонометрические и гиперболические функции.
- •§ Эллиптические интегралы. Введение.
- •II. . Этим интегралом мы и займемся в следующем параграфе. §. Приведение интеграла к каноническому виду.
- •§. Эллиптические интегралы.
- •§. Интегралы, которые не могут быть выражены, через элементарные функции (не берущиеся интегралы ).
- •4. Интегральные синус и косинус: .
- •Элементы элементарной математики
- •Формулы сокращенного умножения. Метод интервалов решения дробно-рациональных (и не только!) неравенств.
- •Системы двух и трех линейных уравнений. Совместимость, определенность, неопределенность. Метод Гаусса исключения неизвестных.
- •Многочлены. Теорема Безу и ее следствия. Рациональные корни уравнений.
- •Степенная, показательная, логарифмическая функции. Основные свойства и графики. Решение показательных и логарифмических уравнений и неравенств.
- •Тригонометрические функции углового и числового аргументов. Определение и свойства. Обратные тригонометрические функции. Формулы двойного и половинного аргумента. Формулы приведения.
- •Решение простейших (и не только!) тригонометрических уравнений и неравенств.
- •Построение графиков функций с помощью элементарных движений. Общая схема исследование функций с помощью производной.
- •Метод сечений при решении задач с параметром. Задачи, связанные с исследованием функций.
- •§10. Векторы, операции над ними. Скалярное, векторное и смешанное произведение. Проекции векторов. Примеры использования векторов в задачах физики.
- •§11. Уравнение прямой на плоскости в векторной форме.
- •Варианты контрольных работ
- •Дополнение 1 Вещественные числа
- •Сечения множества рациональных чисел
- •Перерізи множини раціональних чисел.
- •Сравнение сечений множества рациональных чисел
- •Порівняння перерізів множними раціональних чисел.
- •Теоремы об аппроксимации вещественных чисел рациональными
- •Теореми про апроксимацію дійсних чисел раціональними.
- •Теорема Дедекинда (непрерывность множества вещественных чисел)
- •Теорема Дедекінда (непрерівність множини дійсних чисел).
- •Сложение вещественных чисел
- •Додавання дійсних чисел
- •Произведение вещественных чисел
- •Дополнение 2 Исчисление высказываний
- •II. Правила построения формул ив.
- •III. Правила вывода ив
- •IV. Аксиомы ив.
- •V.Вывод
- •VI .Интерпретации
- •Математическая логика. Mathematical Logic Математична логіка
- •Формальный язык (аксиоматическая теория) и метаязык
- •Знаки, знакосочетания, алфавит.
- •Знаки, знакосполучення, алфавіт
- •Операции над словами
- •Операції над словами.
- •Выражения формального языка
- •Вирази формальної мови
- •Структурные знаки формального языка
- •Структурні знаки формальної мови
- •Переменные и константы (постоянные)
- •Зминні та сталі (константи)
- •Дополнение 3 Теорема про граничный переход в равенстве.
- •Дополнение 4 § теория пределов
- •Непрерывность и дифференцируемость
§. Высшие производные обратных функций
Пусть
непрерывна, строго монотонна в окрестности
т.
,
где она n - кратно
дифференцируема, причем
.
Тогда в окрестности точки
существует обратная функция
,
которая непрерывна и строго монотонна
в этой окрестности и n
– кратно дифференцируема, причем n-я
производная обратной функции рационально
выражается через n
первых производных исходной функции в
т.
,
при этом в знаменателе стоит
.
.
§. Инвариантность формы первого дифференциала и неинвариантность формы высших дифференциалов функции
Пусть
.
Тогда
т.е.
и
.
Здесь – независимая переменная, а g – функция зависящая от х.
И, тем не менее, формулы для нахождения первого дифференциала одинаковы.
Это явление выражает инвариантность формы первого дифференциала относительно замены переменных.
Теперь для независимой переменной х
=
=
.
А для зависимой переменной g
.
Получили:
,
если х – независимая
переменная, и
,
если g – зависимая
переменная т.е. функция.
Это и есть не инвариантность формы второго (и, естественно, более высоких) дифференциала относительно замены переменных.
Раздел. Основные теоремы о дифференцируемых функциях
Функция
называется возрастающей в некоторой
окрестности
точки
,
если
.
Функция
называется убывающей в некоторой
окрестности
точки
,
если
.![]()
Если функция дифференцируема в точке и ее производная больше (меньше) нуля, то она возрастает (убывает) в этой точке.
т.е.
а это и есть возрастание функции, имеющей положительную производную.
Аналогично для убывания функции, имеющей отрицательную производную.
Пусть
.
Если для значений M и m справедливо, что
и
,
то
говорят, что достигаются максимальное
и минимальное значения функции, и они
обозначаются
.
Пусть
.
Тогда
-
Если это справедливо на всей области определения
функции
,
то говорят, что это глобальный максимум
и глобальный минимум. -
Если это справедливо на некотором подмножестве
мы имеет место
локальный максимум и локальный минимум. -
Строгий максимум, если
не
строгий максимум, если
аналогично
определяются строгий минимум и нестрогий
минимум. -
Точки максимума и минимума называются точками экстремума.
-
Внутренний экстремум – достигается внутри
. -
Краевой экстремум – в граничной точке
.
Т(Ферма). В точке локального внутреннего экстремума производная функции, если она существует и конечна, равна нулю.
∆(для
max). Пусть функция
в точке
имеет локальный внутренний максимум.
Тогда
:
.
Получаем :
и
.
▲
Т(Ролля).
Если функция
дифференцируема внутри замкнутого
промежутка и непрерывна на нем, причем
на концах промежутка, принимает равные
значения, то внутри промежутка найдется
точка с нулевой производной (хотя бы
одна).
.
∆. Функция непрерывная на замкнутом промежутке необходимо ограничена на нем т.е.
причем m,
M – достигаются.
Возможны два случая:
a)
.
-
существует
хотя бы один внутренний локальный
экстремум.
Следовательно, по
теореме Ферма,
.
▲
Т
(Лангранжа). Если функция непрерывна
на замкнутом промежутке и дифференцируема
внутри него то внутри промежутка есть
точка, в которой касательная параллельна
хорде, соединяющей точки
и
.
∆ Рассмотрим
,
где L некоторая
постоянная.
По
условию теоремы
- непрерывна на [a,b],
дифференцируема на (a,b)
.
Константу L подберем из условия : F(a) = F(b).
Получим:
f
(a)
+ La = f
(b) + Lb,
f (a)
– f (b)
= L(b-a)
.
Так
построенная функция
удовлетворяет условиям теоремы Ролля
. Значит
т.е.
. ▲
Следствие:
Если
на
дифференцируема, то
Полученная формула называется формулой конечных приращений.
T

-
их производные одновременно не равны 0;
-
значения одной из функций на концах промежутка не совпадают;
то внутри промежутка есть точка где касательная к кривой, заданной параметрическими уравнениями, определяемыми этими функциями параллельна хорде.
f´²(t)
+ g´²(t)
≠ 0
( f(a)
≠ f(b)
g(a)
g(f)
)
(a,
b)
.
∆ Пусть
g(a)
g(b)
.
Рассмотрим функцию F(x) = f (x) – Lg(x) . Эта функция F(x) = f (x) – Lg(x) непрерывна на [a,b] и дифференцируема на (a,b).
Потребуем: F(а)
= F(b)
f
(а) – Lg(а) = f
(b) – Lg(b)
. Тогда L=
и по теореме Ролля :
при t =
. ▲
Tº (Дарбу). Произвольная функция, дифференцируемая на замкнутом промежутке, и принимающая два некоторых значения принимает и всякое промежуточное значение.
-
Частный случай : Если на концах промежутка функция имеет производную разных знаков, то внутри промежутка есть точка, в которой производная равна нулю.
∆ Пусть
и γ
(
,
β).
Рассмотрим функцию F(x) = f (x) – γx.
Для неё
.
на концах промежутка
принимает значения разных знаков,
следовательно
.
▲
Tº
(Об односторонней производной). Если
функция f определена
в односторонней окрестности точки x
= a и непрерывна в ней
, а в соответствующей проколотой
окрестности дифференцируема, то
односторонняя производная равна
соответствующему пределу производной
в этой точки
.
∆ Пусть
.
Тогда
.
Т.к. a
< γ(x)
< x , то
.
Если в формуле
устремить x → a
+ 0, то получим
.
▲
