
- •Бийский технологический институт (филиал)
- •170104.65 – Высокоэнергетические устройства
- •160302.65 - Ракетные двигатели
- •Оглавление
- •Введение
- •Принципы сопротивления материалов Принцип Сен-Венана
- •Принцип независимости действия сил
- •Принцип начальных размеров
- •Внутренние силы. Метод сечений
- •Напряжения и деформации Напряжения
- •Связь компонентов внутренних сил с напряжениями
- •Определение напряжений на наклонных площадках
- •Определение главных напряжений и главных площадок
- •Плоское напряженное состояние
- •Графический способ определения напряжений Круги Мора
- •Графическое определение главных напряжений и положения главных площадок
- •Деформации. Деформированное состояние в точке тела
- •Обобщенный закон Гука для изотропного тела
- •Удельная потенциальная энергия деформации
- •Пример 3.1
- •Растяжение-сжатие Определение внутренних усилий
- •Определение напряжений
- •Определение деформаций и перемещений
- •Определение механических свойств материала при растяжении
- •Диаграммы условных и истинных напряжений
- •Механические характеристики материалов
- •Закон разгрузки и повторного нагружения
- •Пластичные и хрупкие материалы
- •Механические свойства при сжатии
- •Влияние температуры на механические характеристики
- •Ползучесть, последействие и релаксация
- •Длительная прочность
- •Коэффициент запаса прочности. Выбор допускаемых напряжений
- •Основные типы задач при расчете на прочность растянутых (сжатых) стержней
- •Пример 4.1
- •Пример 4.2
- •Пример 4.3
- •Анализ напряженного состояния при растяжении (сжатии)
- •Потенциальная энергия деформации при растяжении
- •Концентрация напряжений
- •Статически неопределимые задачи при растяжении и сжатии
- •Пример 4.4
- •Пример 4.5
- •Пример 4.6
- •Сдвиг (срез) Определение внутренних сил, напряжений и деформаций при сдвиге
- •Анализ напряженного состояния при сдвиге
- •Потенциальная энергия деформации при чистом сдвиге
- •Расчет на прочность при сдвиге
- •Расчет заклепочного соединения
- •Пример 5.1
- •Геометрические характеристики плоских сечений
- •Определения
- •Зависимость между моментами инерции относительно параллельных осей
- •Моменты инерции простейших фигур
- •Вычисление моментов инерции сложных фигур
- •Изменение моментов инерции при повороте осей координат
- •Главные оси и главные моменты инерции
- •Моменты сопротивления площади
- •Пример 6.1
- •Кручение Внутренние силовые факторы при кручении
- •Напряжения и деформации при кручении бруса круглого поперечного сечения
- •Напряженное состояние при кручении
- •Потенциальная энергия деформации при кручении
- •Направление вектора касательного напряжения в контурных точках сечения цилиндрического бруса
- •Кручение тонкостенного бруса замкнутого профиля
- •Кручение бруса прямоугольного сечения
- •Кручение тонкостенного бруса открытого профиля
- •Пример 7.1
- •Расчеты на прочность и жесткость при кручении
- •Пример 7.2
- •Пример 7.3
- •Пример 7.4
- •Расчет цилиндрических винтовых пружин малого шага
- •Статически неопределимые задачи при кручении
- •Плоский прямой поперечный изгиб Основные понятия и определения
- •Плоский прямой изгиб
- •Нормальные напряжения при чистом прямом изгибе
- •Касательные напряжения при плоском прямом изгибе. Формула Журавского
- •Пример 8.1
- •Пример 8.2
- •Расчеты на прочность при поперечном изгибе
- •Потенциальная энергия деформации при изгибе
- •Перемещения при изгибе Дифференциальное уравнение упругой линии балки и его интегрирование
- •Пример 8.4
- •Пример 8.5
- •Пример 8.6
- •Расчет на жесткость при изгибе
- •Определение перемещений с помощью интеграла Мора
- •Пример 8.7
- •Определение перемещений с помощью способа Верещагина
- •Пример 8.9
- •Пример 8.10
- •Определение перемещений с помощью правила «дирижера»
- •Критерии предельного состояния материала при сложном напряженном состоянии. Теории прочности
- •Гипотезы (теории) прочности
- •Критерии разрушения
- •Гипотеза наибольших нормальных напряжений (I теория прочности)
- •Гипотеза наибольших линейных деформаций (II теория прочности)
- •Критерии пластичности
- •Гипотеза наибольших касательных напряжений (III теория прочности)
- •Теория наибольшей удельной потенциальной энергии формоизменения (IV теория прочности)
- •Теория прочности Мора (V теория прочности)
- •Замечания о выборе теории прочности
- •Пример 9.1
- •Пример 9.2
- •Пример 9.3
- •Пример 9.4
- •Расчет на прочность при сложном сопротивлении
- •Косой (двойной) изгиб
- •Пример 10.1
- •Внецентренное растяжение (сжатие)
- •Пример 10.2
- •Пример 10.3
- •Изгиб с кручением
- •Общий случай сложного сопротивления
- •Перемещения в пространственном брусе малой кривизны при произвольной нагрузке
- •Пример 11.1
- •Пример 11.2
- •Статически неопределимые стержневые системы Статическая неопределимость
- •Метод сил. Канонические уравнения
- •Вычисление коэффициентов канонических уравнений
- •Пример 12.1
- •Пример 12.2
- •Определение перемещений в статически неопределимых системах
- •О рациональном выборе основной системы. Использование прямой и обратной симметрии
- •Пример 12.3
- •Пример 12.4
- •Пример 12.5
- •Пример 12.6
- •Устойчивость сжатых стержней. Продольный изгиб Понятие об устойчивости первоначальной формы равновесия
- •Определение критической силы. Формула Эйлера
- •Пределы применимости формулы Эйлера
- •Устойчивость сжатых стержней за пределами упругости. Полная диаграмма критических напряжений
- •Практические способы расчета на продольный изгиб
- •Пример 13.1
- •Расчет на устойчивость с помощью коэффициента снижения основного допускаемого напряжения
- •Рациональные формы сечений сжатых стержней
- •Пример 13.2
- •Расчет элементов конструкций, движущихся с ускорением Внутренние силы, вызванные движением. Силы инерции
- •Расчет поступательно движущихся систем
- •Напряжения в тонкостенном вращающемся кольце
- •Расчет равномерно вращающегося прямого бруса
- •Вращающиеся рамы
- •Расчет на прочность при ударном действии нагрузок Удар. Основные понятия
- •Вертикальный удар
- •Пример 15.1
- •Пример 15.2
- •Пример 15.3
- •Вертикальный удар вследствие внезапной остановки движения
- •Горизонтальный удар
- •Скручивающий удар
Пример 12.1
Решить плоскую раму, представленную на рисунок 12.7.
Данная рама дважды статически неопределима. На рисунок 12.7 показаны три из большого числа возможных эквивалентных систем. Остановимся на первой системе и запишем для нее канонические уравнения
Рисунок 12.7.
Коэффициенты этих уравнений вычислим способом Верещагина. Для этого построим эпюры изгибающих моментов от распределенной нагрузки и единичных сил. Перемножая эпюры согласно индексам коэффициентов, находим
Подставляя эти значения коэффициентов в канонические уравнения и решая их, получаем
.
Суммируя ординаты эпюры «P» с
ординатами эпюры «1», умноженными на
,
и эпюры «2», увеличенными в
раз,
строим суммарную эпюру изгибающих
моментов MΣ.
Изгибающий момент в текущем сечении горизонтального участка находим по формуле (12.8):
.
Приравнивая нулю производную
,
устанавливаем, что эта функция имеет
экстремум при
,
причем
.
Пример 12.2
Построить эпюру изгибающих моментов для рамы, представленной на рисунок 12.8.
Рисунок 12.8.
Рама один раз статически неопределима. Выберем основную систему, удаляя одну связь в нижнем (или верхнем) шарнире. Однако в рассматриваемой раме горизонтальные и вертикальные опорные связи неравноценны. Если удалить горизонтальную связь, то при любой нагрузке реакция Ry оставшейся вертикальной вязи должна быть бесконечно большой, так как линия ее действия проходит через центр верхнего шарнира, а момент внешней нагрузки относительно этого шарнира не равен нулю. Чтобы воспринять даже самую малую нагрузку, эта рама должна сначала повернуться как жесткое целое (без деформации) на бесконечно малый угол dφ. Тогда плечо реакции Ry станет отличным от нуля, а сама реакция будет конечной, но значительной по величине.
Такая система является мгновенно геометрически изменяемой. Ее в качестве основной системы выбирать нельзя.
Положение сразу же изменяется, если удалить не горизонтальную, а вертикальную опорную связь. В такой основной системе при любой нагрузке опорные реакции и внутренние силовые факторы будут конечными и определенными. Эквивалентная система, соответствующая этой основной системе, представлена на рисунок 12.8. Там же приведены эпюры изгибающих моментов от заданной и единичных нагрузок.
Вычисляя коэффициенты канонического уравнения δ1P+δ11X1=0 интегрированием на криволинейных участках и перемножением эпюр на прямолинейных, получаем
;
.
Отсюда
.
Суммарный изгибающий момент на криволинейном участке изменяется по закону
.
Приравнивая нулю производную от MΣ(φ):
,
получаем
.
Следовательно, при φ=40° функция MΣ(φ) имеет экстремум, причем MΣ(45°)=0.15PR. Суммарная эпюра приведе на на рисунок 12.8.
Определение перемещений в статически неопределимых системах
После раскрытия статической неопределимости и построения суммарных эпюр силовых факторов можно приступить к определению перемещений сечений рассматриваемой стержневой системы. Естественно это делать методом Мора, перемножая, где возможно, по правилу Верещагина суммарные эпюры внутренних силовых факторов на соответствующие эпюры от единичных нагрузок, приложенных в сечениях, перемещения которых определяются.
Однако построение эпюр от единичных нагрузок при приложении их непосредственно к заданной системе требует вторичного раскрытия ее статической неопределимости. Такой достаточно трудоемкой операции можно избежать, если определять перемещения не в заданной, а в эквивалентной системе. Причем не обязательно пользоваться первоначальной эквивалентной системой, выбранной для раскрытия статической неопределимости, так как перемещения одного и того же сечения во всех системах, эквивалентных данной, одинаковы.
Если сечение заданной системы в рассматриваемом направлении не перемещается, то произведение суммарной эпюры на единичную должно быть равно нулю. На этом свойстве основана проверка правильности вычисления неизвестных X1, X2, X3,...Xn при раскрытии статической неопределимости и построения суммарных эпюр.
Абсолютные или относительные перемещения сечений в направлении усилий X1, X2, X3,...Xn отсутствуют, поэтому произведение каждой из единичных эпюр на суммарную должно быть обязательно равно нулю. Пользуясь этим правилом, нетрудно проверить, что суммарная эпюра изгибающих моментов в примере 12.1 построена правильно, так как произведение этой эпюры на первую единичную (см. рисунок 12.7)
.
Ордината суммарной эпюры, под центром тяжести второй единичной эпюры, как видно из рисунка 12.7, равна нулю. Следовательно, произведение и этих двух линейных эпюр также равно нулю.