
- •Бийский технологический институт (филиал)
- •170104.65 – Высокоэнергетические устройства
- •160302.65 - Ракетные двигатели
- •Оглавление
- •Введение
- •Принципы сопротивления материалов Принцип Сен-Венана
- •Принцип независимости действия сил
- •Принцип начальных размеров
- •Внутренние силы. Метод сечений
- •Напряжения и деформации Напряжения
- •Связь компонентов внутренних сил с напряжениями
- •Определение напряжений на наклонных площадках
- •Определение главных напряжений и главных площадок
- •Плоское напряженное состояние
- •Графический способ определения напряжений Круги Мора
- •Графическое определение главных напряжений и положения главных площадок
- •Деформации. Деформированное состояние в точке тела
- •Обобщенный закон Гука для изотропного тела
- •Удельная потенциальная энергия деформации
- •Пример 3.1
- •Растяжение-сжатие Определение внутренних усилий
- •Определение напряжений
- •Определение деформаций и перемещений
- •Определение механических свойств материала при растяжении
- •Диаграммы условных и истинных напряжений
- •Механические характеристики материалов
- •Закон разгрузки и повторного нагружения
- •Пластичные и хрупкие материалы
- •Механические свойства при сжатии
- •Влияние температуры на механические характеристики
- •Ползучесть, последействие и релаксация
- •Длительная прочность
- •Коэффициент запаса прочности. Выбор допускаемых напряжений
- •Основные типы задач при расчете на прочность растянутых (сжатых) стержней
- •Пример 4.1
- •Пример 4.2
- •Пример 4.3
- •Анализ напряженного состояния при растяжении (сжатии)
- •Потенциальная энергия деформации при растяжении
- •Концентрация напряжений
- •Статически неопределимые задачи при растяжении и сжатии
- •Пример 4.4
- •Пример 4.5
- •Пример 4.6
- •Сдвиг (срез) Определение внутренних сил, напряжений и деформаций при сдвиге
- •Анализ напряженного состояния при сдвиге
- •Потенциальная энергия деформации при чистом сдвиге
- •Расчет на прочность при сдвиге
- •Расчет заклепочного соединения
- •Пример 5.1
- •Геометрические характеристики плоских сечений
- •Определения
- •Зависимость между моментами инерции относительно параллельных осей
- •Моменты инерции простейших фигур
- •Вычисление моментов инерции сложных фигур
- •Изменение моментов инерции при повороте осей координат
- •Главные оси и главные моменты инерции
- •Моменты сопротивления площади
- •Пример 6.1
- •Кручение Внутренние силовые факторы при кручении
- •Напряжения и деформации при кручении бруса круглого поперечного сечения
- •Напряженное состояние при кручении
- •Потенциальная энергия деформации при кручении
- •Направление вектора касательного напряжения в контурных точках сечения цилиндрического бруса
- •Кручение тонкостенного бруса замкнутого профиля
- •Кручение бруса прямоугольного сечения
- •Кручение тонкостенного бруса открытого профиля
- •Пример 7.1
- •Расчеты на прочность и жесткость при кручении
- •Пример 7.2
- •Пример 7.3
- •Пример 7.4
- •Расчет цилиндрических винтовых пружин малого шага
- •Статически неопределимые задачи при кручении
- •Плоский прямой поперечный изгиб Основные понятия и определения
- •Плоский прямой изгиб
- •Нормальные напряжения при чистом прямом изгибе
- •Касательные напряжения при плоском прямом изгибе. Формула Журавского
- •Пример 8.1
- •Пример 8.2
- •Расчеты на прочность при поперечном изгибе
- •Потенциальная энергия деформации при изгибе
- •Перемещения при изгибе Дифференциальное уравнение упругой линии балки и его интегрирование
- •Пример 8.4
- •Пример 8.5
- •Пример 8.6
- •Расчет на жесткость при изгибе
- •Определение перемещений с помощью интеграла Мора
- •Пример 8.7
- •Определение перемещений с помощью способа Верещагина
- •Пример 8.9
- •Пример 8.10
- •Определение перемещений с помощью правила «дирижера»
- •Критерии предельного состояния материала при сложном напряженном состоянии. Теории прочности
- •Гипотезы (теории) прочности
- •Критерии разрушения
- •Гипотеза наибольших нормальных напряжений (I теория прочности)
- •Гипотеза наибольших линейных деформаций (II теория прочности)
- •Критерии пластичности
- •Гипотеза наибольших касательных напряжений (III теория прочности)
- •Теория наибольшей удельной потенциальной энергии формоизменения (IV теория прочности)
- •Теория прочности Мора (V теория прочности)
- •Замечания о выборе теории прочности
- •Пример 9.1
- •Пример 9.2
- •Пример 9.3
- •Пример 9.4
- •Расчет на прочность при сложном сопротивлении
- •Косой (двойной) изгиб
- •Пример 10.1
- •Внецентренное растяжение (сжатие)
- •Пример 10.2
- •Пример 10.3
- •Изгиб с кручением
- •Общий случай сложного сопротивления
- •Перемещения в пространственном брусе малой кривизны при произвольной нагрузке
- •Пример 11.1
- •Пример 11.2
- •Статически неопределимые стержневые системы Статическая неопределимость
- •Метод сил. Канонические уравнения
- •Вычисление коэффициентов канонических уравнений
- •Пример 12.1
- •Пример 12.2
- •Определение перемещений в статически неопределимых системах
- •О рациональном выборе основной системы. Использование прямой и обратной симметрии
- •Пример 12.3
- •Пример 12.4
- •Пример 12.5
- •Пример 12.6
- •Устойчивость сжатых стержней. Продольный изгиб Понятие об устойчивости первоначальной формы равновесия
- •Определение критической силы. Формула Эйлера
- •Пределы применимости формулы Эйлера
- •Устойчивость сжатых стержней за пределами упругости. Полная диаграмма критических напряжений
- •Практические способы расчета на продольный изгиб
- •Пример 13.1
- •Расчет на устойчивость с помощью коэффициента снижения основного допускаемого напряжения
- •Рациональные формы сечений сжатых стержней
- •Пример 13.2
- •Расчет элементов конструкций, движущихся с ускорением Внутренние силы, вызванные движением. Силы инерции
- •Расчет поступательно движущихся систем
- •Напряжения в тонкостенном вращающемся кольце
- •Расчет равномерно вращающегося прямого бруса
- •Вращающиеся рамы
- •Расчет на прочность при ударном действии нагрузок Удар. Основные понятия
- •Вертикальный удар
- •Пример 15.1
- •Пример 15.2
- •Пример 15.3
- •Вертикальный удар вследствие внезапной остановки движения
- •Горизонтальный удар
- •Скручивающий удар
Гипотезы (теории) прочности
Установлено, что в каждой точке нагруженного тела, в общем случае действует три главных напряжения.
Опыт показывает, что поведение материалов, т. е. начало стадии пластических деформаций и характер разрушения (хрупкий, вязкий), зависят от величины, знака и соотношения главных напряжений.
Поэтому, чтобы судить о прочности материала при сложном напряженном состоянии, нужно предварительно знать - в какой момент при той или иной комбинации главных напряжений наступает опасное состояние материала.
При простом напряженном состоянии ответ на этот вопрос дают диаграммы растяжения или сжатия. Предельными напряжениями считаются такие, при которых хрупкий материал разрушается, а пластичный материал получает недопустимо большие пластические деформации.
При сложном напряженном состоянии решение этой задачи значительно сложнее, т. к. число различных сочетаний из главных напряжений неограниченно велико, а опыт технически очень сложен.
Вследствие этого при составлении условий прочности материала при сложном напряженном состоянии мы можем располагать только допускаемыми напряжениями, установленными по результатам испытаний на простое растяжение или сжатие.
В связи с этим возникает задача: зная максимально допустимые безопасные напряжения при простом растяжении, найти эквивалентную, т. е. равно безопасную комбинацию из главных напряжений при сложном напряженном состоянии.
Единственным практическим путем решения этой задачи является установление общих критериев разрушения, которые позволили бы оценить опасность перехода материала в предельное состояние при сложном напряженном состоянии, используя лишь данные опытов на растяжение.
Критерии разрушения или гипотезы прочности представляют собой предположения о преимущественном влиянии на прочность материалов того или иного фактора, сопутствующего процессу деформации и разрушения материалов.
Наиболее важными факторами, связанными с возникновением опасного состояния материала, являются: нормальные и касательные напряжения, линейные деформации и потенциальная энергия деформации.
Который из этих факторов является главной причиной разрушения установить не удается, т. к. невозможно наблюдать действие какого-нибудь одного фактора изолированно от остальных.
При сложном напряженном состоянии следует говорить не о предельном напряжении, а о предельном напряженном состоянии. В качестве предельного состояния в опасной точке детали принимается переход материала в окрестности данной точки из упругого состояния в пластическое или разрушение детали, выражающееся в образовании трещин.
Условимся рассматривать такие случаи напряженного состояния, когда все нагрузки возрастают пропорционально некоторому параметру, вплоть до наступления предельного напряженного состояния. При этом главные напряжения также возрастают пропорционально.
Коэффициентом запаса прочности при сложном напряженном состоянии называется число, на которое следует умножить все компоненты тензора напряжений (или s1, s2, s3), чтобы данное напряженное состояние стало предельным.
Равноопасными называются такие напряженные состояния, для которых коэффициенты запаса прочности равны.
Это дает возможность сравнивать все напряженные состояния между собой, заменяя их равноопасным одноосным напряженным состоянием (растяжением).
Эквивалентным напряжением называется напряжение, которое следует создать в растянутом образце, чтобы его напряженное состояние стало равноопасным заданному напряженному состоянию (рисунок 9.1).
Рисунок 9.1.
Заменяя сложное напряженное состояние эквивалентным растяжением, получаем возможность использовать при сложном напряженном состоянии условие прочности при простом растяжении:
|
(9.1) |
Условие наступления предельного состояния имеет следующий вид:
|
(9.2) |