
- •Бийский технологический институт (филиал)
- •170104.65 – Высокоэнергетические устройства
- •160302.65 - Ракетные двигатели
- •Оглавление
- •Введение
- •Принципы сопротивления материалов Принцип Сен-Венана
- •Принцип независимости действия сил
- •Принцип начальных размеров
- •Внутренние силы. Метод сечений
- •Напряжения и деформации Напряжения
- •Связь компонентов внутренних сил с напряжениями
- •Определение напряжений на наклонных площадках
- •Определение главных напряжений и главных площадок
- •Плоское напряженное состояние
- •Графический способ определения напряжений Круги Мора
- •Графическое определение главных напряжений и положения главных площадок
- •Деформации. Деформированное состояние в точке тела
- •Обобщенный закон Гука для изотропного тела
- •Удельная потенциальная энергия деформации
- •Пример 3.1
- •Растяжение-сжатие Определение внутренних усилий
- •Определение напряжений
- •Определение деформаций и перемещений
- •Определение механических свойств материала при растяжении
- •Диаграммы условных и истинных напряжений
- •Механические характеристики материалов
- •Закон разгрузки и повторного нагружения
- •Пластичные и хрупкие материалы
- •Механические свойства при сжатии
- •Влияние температуры на механические характеристики
- •Ползучесть, последействие и релаксация
- •Длительная прочность
- •Коэффициент запаса прочности. Выбор допускаемых напряжений
- •Основные типы задач при расчете на прочность растянутых (сжатых) стержней
- •Пример 4.1
- •Пример 4.2
- •Пример 4.3
- •Анализ напряженного состояния при растяжении (сжатии)
- •Потенциальная энергия деформации при растяжении
- •Концентрация напряжений
- •Статически неопределимые задачи при растяжении и сжатии
- •Пример 4.4
- •Пример 4.5
- •Пример 4.6
- •Сдвиг (срез) Определение внутренних сил, напряжений и деформаций при сдвиге
- •Анализ напряженного состояния при сдвиге
- •Потенциальная энергия деформации при чистом сдвиге
- •Расчет на прочность при сдвиге
- •Расчет заклепочного соединения
- •Пример 5.1
- •Геометрические характеристики плоских сечений
- •Определения
- •Зависимость между моментами инерции относительно параллельных осей
- •Моменты инерции простейших фигур
- •Вычисление моментов инерции сложных фигур
- •Изменение моментов инерции при повороте осей координат
- •Главные оси и главные моменты инерции
- •Моменты сопротивления площади
- •Пример 6.1
- •Кручение Внутренние силовые факторы при кручении
- •Напряжения и деформации при кручении бруса круглого поперечного сечения
- •Напряженное состояние при кручении
- •Потенциальная энергия деформации при кручении
- •Направление вектора касательного напряжения в контурных точках сечения цилиндрического бруса
- •Кручение тонкостенного бруса замкнутого профиля
- •Кручение бруса прямоугольного сечения
- •Кручение тонкостенного бруса открытого профиля
- •Пример 7.1
- •Расчеты на прочность и жесткость при кручении
- •Пример 7.2
- •Пример 7.3
- •Пример 7.4
- •Расчет цилиндрических винтовых пружин малого шага
- •Статически неопределимые задачи при кручении
- •Плоский прямой поперечный изгиб Основные понятия и определения
- •Плоский прямой изгиб
- •Нормальные напряжения при чистом прямом изгибе
- •Касательные напряжения при плоском прямом изгибе. Формула Журавского
- •Пример 8.1
- •Пример 8.2
- •Расчеты на прочность при поперечном изгибе
- •Потенциальная энергия деформации при изгибе
- •Перемещения при изгибе Дифференциальное уравнение упругой линии балки и его интегрирование
- •Пример 8.4
- •Пример 8.5
- •Пример 8.6
- •Расчет на жесткость при изгибе
- •Определение перемещений с помощью интеграла Мора
- •Пример 8.7
- •Определение перемещений с помощью способа Верещагина
- •Пример 8.9
- •Пример 8.10
- •Определение перемещений с помощью правила «дирижера»
- •Критерии предельного состояния материала при сложном напряженном состоянии. Теории прочности
- •Гипотезы (теории) прочности
- •Критерии разрушения
- •Гипотеза наибольших нормальных напряжений (I теория прочности)
- •Гипотеза наибольших линейных деформаций (II теория прочности)
- •Критерии пластичности
- •Гипотеза наибольших касательных напряжений (III теория прочности)
- •Теория наибольшей удельной потенциальной энергии формоизменения (IV теория прочности)
- •Теория прочности Мора (V теория прочности)
- •Замечания о выборе теории прочности
- •Пример 9.1
- •Пример 9.2
- •Пример 9.3
- •Пример 9.4
- •Расчет на прочность при сложном сопротивлении
- •Косой (двойной) изгиб
- •Пример 10.1
- •Внецентренное растяжение (сжатие)
- •Пример 10.2
- •Пример 10.3
- •Изгиб с кручением
- •Общий случай сложного сопротивления
- •Перемещения в пространственном брусе малой кривизны при произвольной нагрузке
- •Пример 11.1
- •Пример 11.2
- •Статически неопределимые стержневые системы Статическая неопределимость
- •Метод сил. Канонические уравнения
- •Вычисление коэффициентов канонических уравнений
- •Пример 12.1
- •Пример 12.2
- •Определение перемещений в статически неопределимых системах
- •О рациональном выборе основной системы. Использование прямой и обратной симметрии
- •Пример 12.3
- •Пример 12.4
- •Пример 12.5
- •Пример 12.6
- •Устойчивость сжатых стержней. Продольный изгиб Понятие об устойчивости первоначальной формы равновесия
- •Определение критической силы. Формула Эйлера
- •Пределы применимости формулы Эйлера
- •Устойчивость сжатых стержней за пределами упругости. Полная диаграмма критических напряжений
- •Практические способы расчета на продольный изгиб
- •Пример 13.1
- •Расчет на устойчивость с помощью коэффициента снижения основного допускаемого напряжения
- •Рациональные формы сечений сжатых стержней
- •Пример 13.2
- •Расчет элементов конструкций, движущихся с ускорением Внутренние силы, вызванные движением. Силы инерции
- •Расчет поступательно движущихся систем
- •Напряжения в тонкостенном вращающемся кольце
- •Расчет равномерно вращающегося прямого бруса
- •Вращающиеся рамы
- •Расчет на прочность при ударном действии нагрузок Удар. Основные понятия
- •Вертикальный удар
- •Пример 15.1
- •Пример 15.2
- •Пример 15.3
- •Вертикальный удар вследствие внезапной остановки движения
- •Горизонтальный удар
- •Скручивающий удар
Расчеты на прочность и жесткость при кручении
Принципы расчетов на прочность, изложенные в главе 4 применительно к одноосному растяжению и сжатию, полностью справедливы и для случая кручения бруса. При кручении расчеты на прочность также делятся на проектировочные и поверочные. В основе расчетов лежит условие прочности
|
(7.34) |
где τmax - максимальное касательное напряжение в брусе, определяемое по вышеприведенным уравнениям в зависимости от формы сечения; [τ] - допускаемое касательное напряжение, равное части предельного напряжения для материала детали - предела прочности τв или предела текучести τт. Коэффициент запаса прочности устанавливается из тех же соображений, что и при растяжении. Например, для вала полого круглого поперечного сечения, с внешним диаметром D и внутренним диаметром d, имеем
|
(7.35) |
где α=d/D - коэффициент полости сечения.
Условие жесткости такого вала при кручении имеет следующий вид:
|
(7.36) |
где [φo] - допускаемый относительный угол закручивания.
Пример 7.2
Подобрать диаметр сплошного вала, передающего мощность N=450 л.с. при частоте вращения n=300 об/мин. Угол закручивания не должен превышать одного градуса на 2 метра длины вала; [τ]=40 МПа, G=8·104 МПа.
Крутящий момент определяем из уравнения (7.1)
Диаметр вала по условию прочности определяется из уравнения (7.35)
Диаметр вала по условию жесткости определяется из уравнения (7.36)
Выбираем больший размер 0,112 м.
Пример 7.3
Имеются два равнопрочных вала из одного материала, одинаковой длины, передающих одинаковый крутящий момент; один из них сплошной, а другой полый с коэффициентом полости α=0.8. Во сколько раз сплошной вал тяжелее полого?
Равнопрочными валами из одинакового материала считаются такие валы, у которых при одинаковых крутящих моментах, возникают одинаковые максимальные касательные напряжения, то есть
.
Условие равной прочности переходит в условие равенства моментов сопротивления:
.
Откуда получаем:
.
Отношение весов двух валов равно отношению площадей их поперечных сечений:
.
Подставляя в это уравнение отношение диаметров из условия равной прочности, получим
.
Как показывает этот результат, полый вал, будучи одинаковым по прочности, вдвое легче сплошного. Это объясняется тем, что в силу линейного закона распределения касательных напряжений по радиусу вала, внутренние слои относительно мало нагружены.
Пример 7.4
Имеются два равнопрочных вала из одного материала, одинаковой длины, передающие одинаковый крутящий момент; один из них круглого поперечного сечения, а другой - квадратного. Во сколько раз квадратный вал тяжелее круглого?
Условие равной прочности имеет следующий вид:
,
где Wк=αhb2; значение коэффициента α определяется по таблице 7.1 и составляет для квадратного сечения (b=h) α=0.208.
Из условия равной прочности получаем:
.
Отношение весов двух валов равно отношению площадей их поперечных сечений:
.
Подставляя в это уравнение отношение b/D из условия равной прочности, получим
.
Расчет цилиндрических винтовых пружин малого шага
Определим напряжения и деформации при осевом растяжении и сжатии цилиндрической пружины, навитой из прутка круглого сечения диаметра d (рисунок 7.18 а). Конструктивно пружины растяжения и сжатия отличаются оформлением их концов, но концевые витки при расчетах пружин на прочность и жесткость во внимание не принимаются.
Цилиндрические пружины характеризуются средним диаметром витка D, числом витков n, углом подъема витков α и шагом пружины h.
Наибольшее распространение в технике имеют пружины с небольшим углом подъема винтовой линии (α<5°), называемые пружинами малого шага.
В пружинах малого шага можно пренебречь подъемом витков и считать длину витка примерно равной πD, а сам виток - расположенным в плоскости, нормальной к оси пружины. Но в таком случае, сечение прутка пружины плоскостью, содержащей ее ось, можно рассматривать как ее поперечное сечение. Указанные допущения положены в основу приближенного расчета пружин.
Разделим пружину осевым сечением на две части и отбросим, одну из них. Из условия равновесия оставшейся части (рисунок 7.18 б) следует, что внутренние касательные силы упругости в сечении пружины приводятся к перерезывающей силе Q=P и крутящему моменту Мк=PD/2.
Касательные напряжения, вызванные кручением, достигают максимума в контурных точках сечения, а напряжения от перерезывающей силы можно в первом приближении считать равномерно распределенными по плоскости сечения. В точке А контура сечения суммарные касательные напряжения, как видно из рисунок 7.19, достигают наибольшей величины
,
или
|
(7.37) |
Для большинства пружин отношение d/2D - величина малая по сравнению с единицей. Это говорит о том, что основным видом деформации для пружин является кручение, а срезом можно пренебречь и вычислять напряжения в пружине по формуле
|
(7.38) |
Рисунок 7.18
Рисунок 7.19
Рисунок 7.20
Изменение продольных размеров λ (рисунок 7.20) удобно определить энергетическим методом, приравнивая работу А статически приложенной силы Р потенциальной энергии деформации U пружины. Работа внешних сил A=Pλ/2, а потенциальная энергия накапливается, главным образом, за счет кручения прутка и поэтому может быть вычислена по формуле (7.15). Учитывая, что крутящий Мк=PD/2 и момент инерции Ip=πd4/32 по длине прутка не изменяются, а длина прутка l = πdn, получаем
.
Приравнивая A и U, находим
|
(7.39) |
Для пружин сжатия формула (7.39) справедлива лишь до полного обжатия пружины, т. е. до соприкосновения ее витков. После полного обжатия пружина начинает работать на осевое сжатие как прямой пустотелый брус.