
- •Бийский технологический институт (филиал)
- •170104.65 – Высокоэнергетические устройства
- •160302.65 - Ракетные двигатели
- •Оглавление
- •Введение
- •Принципы сопротивления материалов Принцип Сен-Венана
- •Принцип независимости действия сил
- •Принцип начальных размеров
- •Внутренние силы. Метод сечений
- •Напряжения и деформации Напряжения
- •Связь компонентов внутренних сил с напряжениями
- •Определение напряжений на наклонных площадках
- •Определение главных напряжений и главных площадок
- •Плоское напряженное состояние
- •Графический способ определения напряжений Круги Мора
- •Графическое определение главных напряжений и положения главных площадок
- •Деформации. Деформированное состояние в точке тела
- •Обобщенный закон Гука для изотропного тела
- •Удельная потенциальная энергия деформации
- •Пример 3.1
- •Растяжение-сжатие Определение внутренних усилий
- •Определение напряжений
- •Определение деформаций и перемещений
- •Определение механических свойств материала при растяжении
- •Диаграммы условных и истинных напряжений
- •Механические характеристики материалов
- •Закон разгрузки и повторного нагружения
- •Пластичные и хрупкие материалы
- •Механические свойства при сжатии
- •Влияние температуры на механические характеристики
- •Ползучесть, последействие и релаксация
- •Длительная прочность
- •Коэффициент запаса прочности. Выбор допускаемых напряжений
- •Основные типы задач при расчете на прочность растянутых (сжатых) стержней
- •Пример 4.1
- •Пример 4.2
- •Пример 4.3
- •Анализ напряженного состояния при растяжении (сжатии)
- •Потенциальная энергия деформации при растяжении
- •Концентрация напряжений
- •Статически неопределимые задачи при растяжении и сжатии
- •Пример 4.4
- •Пример 4.5
- •Пример 4.6
- •Сдвиг (срез) Определение внутренних сил, напряжений и деформаций при сдвиге
- •Анализ напряженного состояния при сдвиге
- •Потенциальная энергия деформации при чистом сдвиге
- •Расчет на прочность при сдвиге
- •Расчет заклепочного соединения
- •Пример 5.1
- •Геометрические характеристики плоских сечений
- •Определения
- •Зависимость между моментами инерции относительно параллельных осей
- •Моменты инерции простейших фигур
- •Вычисление моментов инерции сложных фигур
- •Изменение моментов инерции при повороте осей координат
- •Главные оси и главные моменты инерции
- •Моменты сопротивления площади
- •Пример 6.1
- •Кручение Внутренние силовые факторы при кручении
- •Напряжения и деформации при кручении бруса круглого поперечного сечения
- •Напряженное состояние при кручении
- •Потенциальная энергия деформации при кручении
- •Направление вектора касательного напряжения в контурных точках сечения цилиндрического бруса
- •Кручение тонкостенного бруса замкнутого профиля
- •Кручение бруса прямоугольного сечения
- •Кручение тонкостенного бруса открытого профиля
- •Пример 7.1
- •Расчеты на прочность и жесткость при кручении
- •Пример 7.2
- •Пример 7.3
- •Пример 7.4
- •Расчет цилиндрических винтовых пружин малого шага
- •Статически неопределимые задачи при кручении
- •Плоский прямой поперечный изгиб Основные понятия и определения
- •Плоский прямой изгиб
- •Нормальные напряжения при чистом прямом изгибе
- •Касательные напряжения при плоском прямом изгибе. Формула Журавского
- •Пример 8.1
- •Пример 8.2
- •Расчеты на прочность при поперечном изгибе
- •Потенциальная энергия деформации при изгибе
- •Перемещения при изгибе Дифференциальное уравнение упругой линии балки и его интегрирование
- •Пример 8.4
- •Пример 8.5
- •Пример 8.6
- •Расчет на жесткость при изгибе
- •Определение перемещений с помощью интеграла Мора
- •Пример 8.7
- •Определение перемещений с помощью способа Верещагина
- •Пример 8.9
- •Пример 8.10
- •Определение перемещений с помощью правила «дирижера»
- •Критерии предельного состояния материала при сложном напряженном состоянии. Теории прочности
- •Гипотезы (теории) прочности
- •Критерии разрушения
- •Гипотеза наибольших нормальных напряжений (I теория прочности)
- •Гипотеза наибольших линейных деформаций (II теория прочности)
- •Критерии пластичности
- •Гипотеза наибольших касательных напряжений (III теория прочности)
- •Теория наибольшей удельной потенциальной энергии формоизменения (IV теория прочности)
- •Теория прочности Мора (V теория прочности)
- •Замечания о выборе теории прочности
- •Пример 9.1
- •Пример 9.2
- •Пример 9.3
- •Пример 9.4
- •Расчет на прочность при сложном сопротивлении
- •Косой (двойной) изгиб
- •Пример 10.1
- •Внецентренное растяжение (сжатие)
- •Пример 10.2
- •Пример 10.3
- •Изгиб с кручением
- •Общий случай сложного сопротивления
- •Перемещения в пространственном брусе малой кривизны при произвольной нагрузке
- •Пример 11.1
- •Пример 11.2
- •Статически неопределимые стержневые системы Статическая неопределимость
- •Метод сил. Канонические уравнения
- •Вычисление коэффициентов канонических уравнений
- •Пример 12.1
- •Пример 12.2
- •Определение перемещений в статически неопределимых системах
- •О рациональном выборе основной системы. Использование прямой и обратной симметрии
- •Пример 12.3
- •Пример 12.4
- •Пример 12.5
- •Пример 12.6
- •Устойчивость сжатых стержней. Продольный изгиб Понятие об устойчивости первоначальной формы равновесия
- •Определение критической силы. Формула Эйлера
- •Пределы применимости формулы Эйлера
- •Устойчивость сжатых стержней за пределами упругости. Полная диаграмма критических напряжений
- •Практические способы расчета на продольный изгиб
- •Пример 13.1
- •Расчет на устойчивость с помощью коэффициента снижения основного допускаемого напряжения
- •Рациональные формы сечений сжатых стержней
- •Пример 13.2
- •Расчет элементов конструкций, движущихся с ускорением Внутренние силы, вызванные движением. Силы инерции
- •Расчет поступательно движущихся систем
- •Напряжения в тонкостенном вращающемся кольце
- •Расчет равномерно вращающегося прямого бруса
- •Вращающиеся рамы
- •Расчет на прочность при ударном действии нагрузок Удар. Основные понятия
- •Вертикальный удар
- •Пример 15.1
- •Пример 15.2
- •Пример 15.3
- •Вертикальный удар вследствие внезапной остановки движения
- •Горизонтальный удар
- •Скручивающий удар
Коэффициент запаса прочности. Выбор допускаемых напряжений
Фактические нагрузки, действующие на деталь, и свойства материалов, из которых она изготовлена, могут значительно отличаться от тех, которые принимаются для расчета.
При этом факторы, снижающие прочность детали (перегрузки, неоднородность материалов и т. д.), носят чаще всего случайный характер и предварительно не могут быть учтены.
Так как детали и сооружения в целом должны безопасно работать и при этих неблагоприятных условиях, то необходимо принять определенные меры предосторожности. С этой целью напряжения, обеспечивающие безотказную работу (эксплуатации) машины или любого другого сооружения, должны быть ниже тех предельных напряжений, при которых может произойти разрушение или возникнуть пластические деформации.
Таким образом, принимают
|
(4.9) |
где [σ]- допускаемое напряжение; [n] - нормативный (т. е. предписываемый нормами проектирования конструкций) коэффициент запаса прочности, называемый также коэффициентом безопасности, σn - предельное напряжение материала.
При статических нагрузках за предельное напряжение для хрупких материалов принимают предел прочности, для пластичных - предел текучести, так как при напряжениях, равных пределу текучести, возникают значительные пластические деформации, которые недопустимы.
Таким образом, коэффициент запаса прочности вводится для того, чтобы обеспечить безопасную, надежную работу сооружения и отдельных его частей, несмотря на возможные неблагоприятные отклонения действительных условий их работы от расчетных.
Вопрос о нормативном коэффициенте запаса прочности [n] решается с учетом имеющегося опыта эксплуатации сооружений и машин.
В последнее время один общий коэффициент запаса расчленяют на ряд составляющих, частных коэффициентов запаса, каждый из которых отражает влияние на прочность элемента конструкции какого-либо определенного фактора или группы факторов. Например, один из коэффициентов отражает возможные отклонения механических характеристик материала от принимаемых в качестве расчетных, другой - отклонения действующих нагрузок от их расчетных значений и т. д.
Такое разделение общего коэффициента запаса позволяет лучше учесть многообразные конкретные условия работы деталей машин и сооружений и проектировать их с большей надежностью и экономичностью.
Коэффициент запаса прочности представляют в виде произведения
|
(4.10) |
В вопросе о частных коэффициентах и их значениях до сих пор нет единообразия. Значения коэффициентов запаса прочности обычно принимают на основании опыта конструирования и эксплуатации машин определенного типа. В настоящее время в машиностроении имеются рекомендации пользоваться одним, тремя, пятью и даже десятью частными коэффициентами запаса прочности. В «Справочнике машиностроителя» рекомендуется пользоваться тремя частными коэффициентами:
n1 - коэффициент, учитывающий неточность в определении нагрузок и напряжений. Значение этого коэффициента при повышенной точности определения действующих напряжений может приниматься равным 1,2-1,5, при меньшей точности расчета – 2-3;
n2 - коэффициент, учитывающий неоднородность материала, повышенную его чувствительность к недостаткам механической обработки. Коэффициент n2 в расчетах по пределу текучести при действии статических нагрузок можно принимать по Таблица 4.3 (без учета влияния абсолютных размеров) в зависимости от отношения предела текучести к пределу прочности.
Таблица 4.3
σт/σв |
0,45-0,55 |
0,55-0,7 |
0,7-0,9 |
n2 |
1,2-1,5 |
1,4-1,8 |
1,7-2,3 |
При расчете по пределу прочности для малопластичных и хрупких материалов величину n2 принимают:
а) для малопластичных материалов (высокопрочные стали при низком отпуске) n2=2-3;
б) для хрупких материалов n2=3-4;
в) для весьма хрупких материалов n2=4-6. При расчете на усталость коэффициент n2 принимают равным 1,5-2,0, увеличивая его для материала с пониженной однородностью (особенно для литья) и для деталей больших размеров до 3,0 и более;
n3 - коэффициент условий работы, учитывающий степень ответственности детали, равный 1-1,5.
В Таблица 4.4 приведены ориентировочные значения допускаемых напряжений при статическом нагружении для некоторых материалов.
Таблица 4.4 Допускаемые напряжения для разных материалов
Материал |
Допускаемые напряжения, МПа |
|
На растяжение |
На сжатие |
|
Чугун серый в отливках: СЧ 12-28 СЧ 15-32 СЧ 21-40 Сталь: Ст1 и Ст2 Ст3 Ст3 в мостах |
20-30 25-40 35-55 140 160 140 |
70-110 90-150 160-200 140 160 140 |
Сталь углеродистая конструкционная в машиностроении |
60-250 |
60-250 |
Сталь легированная конструкционная в машиностроении |
100-400 и выше |
100-400 и выше |
Дюралюминий |
80-150 |
80-150 |
Латунь |
70-940 |
70-140 |
Сосна вдоль волокон |
7-10 |
10-12 |
Дуб вдоль волокон |
9-13 |
13-15 |
Кирпичная кладка |
До 0,2 |
0,6-2,5 |
Бетон |
0,1-0,7 |
1-9 |
Текстолит |
15-30 |
30-40 |