Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по линалу.doc
Скачиваний:
45
Добавлен:
29.08.2019
Размер:
4.73 Mб
Скачать

4.3. Решение и исследование систем линейных уравнений по Гауссу.

Рассмотрим СЛУ вида (4.1). Расширенную матрицу системы приведем с помощью ЭП к ступенчатому виду

. (4.2)

Здесь ранг основной матрицы системы равен rgA = r.

1. Если 0, то ранг расширенной матрицы rg = r+1, и (r+1)-е уравнение системы ступенчатого вида имеет вид

0 х1 + … + 0 хn = br+1, то есть несовместно. Значит, и вся СЛУ несовместна.

2. Если = 0, то ранг расширенной матрицы rg = rgA = r. Покажем, что в этом случае СЛУ совместна. Назовем все неизвестные , i = 1,…,r, с которых начинаются ступеньки, главными, а все остальные (nr) неизвестных – свободными. В системе ступенчатого вида, поднимаясь снизу вверх с r-го уравнения и до первого, выразим главные неизвестные через свободные: ,

. Затем в правую

часть этой формулы подставим выражение для главного

неизвестного из предыдущей формулы – получим выражение главного неизвестного только через свободные неизвестные. После этого из (r-2)-й строки системы (4.2) выразим и в правую часть формулы подставим выражения для главных неизвестных , из предыдущих формул – получим выражение главного неизвестного только через свободные неизвестные. Затем переходим к (r-3)-й строке системы (4.2) и так далее до 1-й строки.

На полученные r формул можно смотреть двояко. Во-первых, можно считать, что это СЛУ, равносильная первоначальной СЛУ (4.1) и записанная специфическим удобным способом, при котором некоторые неизвестные (главные) выражены через другие (свободные). Во-вторых, эти формулы можно считать общим решением системы (4.1), в котором свободные неизвестные являются параметрами и принимают произвольные значения из поля Р, а главные неизвестные однозначно находятся по нашим формулам. Для эстетов, которым не нравится второй взгляд, можно уточнить этот второй взгляд введением других букв. Присвоим свободным (nr) неизвестным произвольные значения t1, t2 ,…,tn-r из поля P, a значения главных неизвестных найдем по нашим формулам. Полученный набор значений неизвестных и будет решением системы (4.1).

Таким образом, нами доказана

Теорема Кронекера-Капелли. Система (4.1) совместна тогда и только тогда, когда rg A = rg .

Если r = n, то есть свободных неизвестных нет, и все неизвестные – главные, а матрица ступенчатого вида в (4.2) – треугольная, то система (4.1) имеет единственное решение, то есть является определенной. Если r n, то свободные неизвестные существуют, и система имеет более одного решения, то есть является неопределенной. Если поле Р – бесконечное, то при r n совместная СЛУ имеет бесконечно много решений.

4.4. Решение систем линейных уравнений по Жордану.

Как и при решении по Гауссу приведем расширенную матрицу системы (4.1) с помощью ЭП к ступенчатому виду (4.2). После удаления последних нулевых строк матрица примет вид:

.

Далее снизу вверх, начиная с r-й строки, проделаем над этой матрицей (соответственно, над СЛУ) следующую процедуру. Сделаем над этой матрицей ЭП-III – умножим r-ю строку на . Тогда r-я строка матрицы примет вид:

. С помощью ЭП-I, вычитая r-ю строку с соответствующими коэффициентами из выше расположенных строк, сделаем над 1 в r-й строке все элементы kr-го столбца нулевыми. Затем переходим к (r - 1)-й строке. С помощью ЭП-III сделаем 1 в начале строки на месте с номером (r – 1, kr-1), и с помощью ЭП-I сделаем нули везде выше над этой единицей в kr-1 –м столбце. Затем переходим к (r - 2)-й строке и т.д. После этой процедуры наша матрица примет вид .

Теперь в соответствующей СЛУ оставим главные неизвестные слева, а все остальные слагаемые перенесем в правые части уравнений. Получим, как и при решении по Гауссу, выражения главных неизвестных через свободные. В отличие от метода Гаусса, когда с помощью матрицы (4.2) мы выражали главные неизвестные через свободные, на каждом шаге подставляя в формулу выражения ранее найденных главных неизвестных, при методе Жордана все необходимые вычисления проводятся над матрицей, а в конце мы получаем готовые формулы выражений главных неизвестных через свободные.

Лекция 7.