
- •Грант Верн. Эволюция организмов Предисловие редактора перевода
- •Предисловие к русскому изданию
- •Предисловие
- •Глава 1 Постановка проблемы
- •Разнообразие органического мира
- •Приспособление (адаптация)
- •Адаптивный ландшафт
- •Глава 2 Решение проблемы Сотворение или эволюция
- •Доказательства эволюции
- •Полемика с креационизмом
- •Объяснения эволюции
- •Синтетическая теория
- •Другие теории
- •Глава 3 Воспроизводящаяся популяция
- •Структура популяции
- •Популяции Мамонтова дерева
- •Полиморфизм
- •Полиморфизм по группам крови у человека
- •Полиморфизм по ферментам
- •Гетерозиготность и норма
- •Концепция популяции
- •Глава 4 Статика популяций Закон Харди — Вайнберга
- •Частоты аллелей
- •Формула Харди — Вайнберга
- •Эффекты инбридинга
- •Заключение
- •Глава 5 Динамика популяций Определение микроэволюции
- •Микроэволюционные изменения у Drosophila pseudoobscura
- •Главные факторы эволюции
- •Взаимодействие между факторами эволюции
- •Заключение
- •Глава 6 Мутационный процесс
- •Генные мутации
- •Типы точковых мутаций
- •Генотипический контроль
- •Адаптивная ценность
- •Относительное значение в эволюции малых мутаций и макромутаций
- •Вероятность сохранения новой мутации
- •Давление мутаций
- •Глава 7 Расселение и поток генов
- •Определения
- •Расселение
- •Типы расселения
- •Области расселения
- •Интенсивность иммиграции
- •Поток генов
- •Расселение во времени
- •Поток генов во времени
- •Быть может, мы занижаем оценки расселения?
- •Заключение
- •Глава 8 Рекомбинация
- •Процесс рекомбинации
- •Количество генотипической изменчивости
- •Рекомбинация и мутагенез
- •Адаптивная ценность
- •Рекомбинация и сложность
- •Роль рекомбинации в эволюции
- •Глава 9 Соседства
- •Панмиктическая единица
- •Концепция соседства
- •Область, занимаемая соседством, и его величина
- •Эволюционные свойства больших популяций с соседствами различной величины
- •Оценка величины соседств
- •Глава 10 Основная теория отбора
- •Однолокусная модель
- •Коэффициент отбора
- •Скорость изменения и его степень
- •Приспособленность
- •Дарвиновская концепция отбора
- •Различия между дарвиновской и популяционно-генетической концепциями отбора
- •Компоненты приспособленности
- •Глава 11 Экспрессия генов в связи с отбором
- •Относительность селективной ценности
- •Пластичность фенотипа
- •Плейотропия
- •Модификаторы экспрессивности
- •Модификаторы доминантности
- •Генотип как единица отбора
- •Глава 12 Примеры отбора
- •Иллинойсский эксперимент по селекции кукурузы
- •Жизнеспособность у дрозофилы
- •Меланизм у березовой пяденицы
- •Окраска раковины у наземных улиток
- •Устойчивость к токсинам
- •Одомашнивание
- •Эволюция кукурузы
- •Глава 13 Эффекты плотности и частоты Конкуренция
- •Смеси генотипов в условиях конкуренции
- •Факторы, зависящие от плотности
- •Отбор, зависящий от частоты
- •Жесткий и мягкий отбор
- •Глава 14 Типы индивидуального отбора
- •Направленный отбор
- •Стабилизирующий отбор
- •Дизруптивный отбор
- •Дизруптивный отбор в природе
- •Уравновешивающий отбор
- •Превосходство гетерозигот у Drosophila pseudoobscura
- •Факторы, благоприятствующие полиморфизму
- •Глава 15 Уровни отбора
- •Отбор на субиндивидуальных уровнях
- •Половой отбор
- •Признаки самцов, связанные с драками между ними
- •Репродуктивное поведение у снежного барана и у благородного оленя
- •Признаки, определяющие привлекательность самцов
- •Междемовый отбор
- •Социально-групповой отбор
- •Альтруизм
- •Отбор на видовом уровне
- •Глава 16 Дрейф генов Общие соображения
- •Эффект величины популяции
- •Эффект отбора
- •Эффект потока генов
- •Закрепление сочетаний генов
- •Экспериментальные данные
- •Дрейф в природных популяциях
- •Аллели, определяющие группы крови в популяциях человека
- •Заключение
- •Глава 17 Плата за отбор Генетический груз
- •Полиморфизм по белкам и сегрегационный груз
- •Плата за отбор по Холдейну
- •Плата за отбор и скорость эволюции
- •Сцепление генов и взаимодействие генов и их влияние на ограничение, налагаемое платой за отбор
- •Влияние структуры популяции на ограничение, налагаемое платой за отбор
- •Другие способы сокращения платы за отбор
- •Глава 18 Фенотипические модификации Что такое приобретённый признак?
- •Фенотипическая пластичность
- •Приспособительные свойства фенотипических модификаций
- •Роль фенотипических модификаций в эволюции
- •Глава 19 Генетическая трансформация
- •Трансформация и трансдукция у бактерий
- •Экспериментальная трансформация у животных
- •Гибридная стерильность у Drosophila paulistorum
- •Экспериментальная трансформация у растений
- •Трансформация в природе
- •Обесцвечивание у Euglena
- •Обсуждение
- •Глава 20 Расы и виды
- •Популяционные системы
- •Аллопатрия и симпатрия
- •Непрерывная географическая изменчивость
- •Разобщенные географические расы
- •Экологические расы
- •Биологические виды
- •Полувиды
- •Типы видов
- •Виды у унипарентальных организмов
- •Вид в таксономии
- •Глава 21 Изолирующие механизмы Классификация
- •Экологическая и временная изоляция
- •Механическая изоляция, этологическая изоляция и изоляция гамет
- •Преграды, создаваемые несовместимостью, и нежизнеспособность гибридов
- •Стерильность гибридов
- •Разрушение гибридов
- •Сочетания изолирующих механизмов
- •Глава 22 Экологические взаимоотношения
- •Межвидовая конкуренции
- •Конкурентное исключение
- •Замещение видов
- •Сосуществование видов
- •Отбор, направленный на экологическую дифференциацию
- •Смещение признаков
- •Экологическая ниша
- •Влияние экологических требований
- •Глава 23 Образование рас и постепенное видообразование Эволюционная дивергенция
- •Факторы, участвующие в образовании рас
- •Роль отбора в образовании рас
- •Роль дрейфа генов
- •Роль интрогрессии
- •Роль потока генов
- •Зарождающаяся репродуктивная изоляция
- •Географическая теория видообразования
- •Перекрывающиеся кольца рас
- •Реверсии дивергенции
- •Глава 24 Способы видообразования
- •Квантовое видообразование
- •Сопоставление географического и квантового видообразования
- •Примеры квантового видообразования
- •Квантовое видообразование с участием хромосомных перестроек
- •Видообразование путем аллополиплоидии
- •Гибридное видообразование у растений
- •Проблема симпатрического видообразования
- •Смежно-симпатрическое видообразование
- •Биотически-симпатрическое видообразование
- •Стасипатрическое видообразование
- •Глава 25 Общая теория видообразования
- •Глава 26 Отбор, направленный на создание репродуктивной изоляции
- •Процесс отбора
- •Фактические данные
- •Гибридная несовместимость у Gilia
- •Этологическая изоляция
- •История вопроса
- •Глава 27 Геологическое время Основные этапы в истории Земли
- •Возникновение жизни
- •Начальные этапы эволюции
- •Стадия сложных многоклеточных организмов
- •Обсуждение
- •Глава 28 Направленная эволюция
- •Примеры
- •Эволюционные ряды у Equidae
- •Направления эволюции зубов у лошадей
- •Микроэволюционные аспекты направлений эволюции зубов у лошадей
- •Адаптивная природа направлений эволюции в семействе лошадей
- •Адаптивные аспекты правила Копа
- •Глава 29 Скорости эволюции Измерение скоростей
- •Различия в скоростях
- •Классификация скоростей эволюции
- •Факторы, оказывающие влияние на скорости эволюции
- •Факторы среды
- •Эволюционный потенциал популяционных структур разных типов
- •Иерархии питания и размножения
- •Изменчивость
- •Продолжительность генерации
- •Глава 30 Эволюция крупных групп
- •Происхождение и развитие
- •Скачкообразное развитие или постепенная дивергенция?
- •Роль квантовой эволюции
- •Адаптивная радиация
- •Адаптивная радиация у гавайских цветочниц
- •Класс птиц
- •Глава 31 Концепция макроэволюции и её типы Подходы и путеводные нити
- •Адаптивный ландшафт
- •Необратимость
- •Анагенез и кладогенез
- •Адаптивная радиация
- •Конвергенция и параллельное развитие
- •Ортогенез или ортоселекция?
- •Сетчатая эволюция
- •Квантовая эволюция
- •Квантовое видообразование
- •Генетические революции
- •Филетические направления и видообразовательные направления
- •Квантовые видообразовательные направления
- •Прерывистые равновесия
- •Глава 32 Молекулярная эволюция
- •Различия в последовательностях аминокислот
- •Гибридизация днк
- •Молекулярные взаимосвязи у гоминоидов
- •Теория нейтральности
- •Скорости молекулярной эволюции
- •Глава 33 Онтогенез и филогенез
- •Педоморфоз
- •Рекапитуляция
- •Относительные скорости роста
- •Генетика развития
- •Регуляция
- •Канализация
- •Глава 34 Специализация и прогресс Специализация
- •Направления специализации
- •Ограничения и преадаптация
- •Преадаптация к опылению колибри
- •Концепция прогресса в эволюции
- •Прогрессивная эволюция как форма специализации
- •Сукцессия град
- •Глава 35 Физические и биотические факторы Типы факторов
- •Различия между физическими и биотическими факторами
- •Сочетания биотических факторов
- •Редкие случаи инвазии изолированных сообществ
- •Различные соотношения физических и биотических факторов
- •Роль физических и биотических факторов в прогрессивной эволюции
- •Глава 36 Вымирание
- •Некоторые плейстоценовые и постплейстоценовые копытные
- •Саблезубые кошки
- •Массовое вымирание североамериканских млекопитающих в позднем кайнозое
- •Ниже будут рассмотрены три гипотезы о причинах вымирания.
- •Динозавры
- •Массовое вымирание в позднем мелу
- •Астероидная теория
- •Периоды массового вымирания
- •Глава 37 Биологические аспекты Система классификации приматов
- •Гоминоиды
- •Наследие древесного образа жизни
- •Наследие наземного образа жизни
- •Расовая изменчивость
- •Заключение
- •Глава 38 Социальные факторы Сообщества у приматов, не принадлежащих к антропоидам
- •Язык приматов
- •Интеллект и способность к научению у обезьян
- •Антропоиды
- •Культурная эволюция
- •Социализация
- •Символический язык и концептуальное мышление
- •Эволюционная природа человека
- •Глава 39 Факторы, определяющие эволюцию человека
- •Зависимость между органической и культурной эволюцией
- •Типы отбора
- •Социально-групповой отбор
- •Интеллект
- •Межвидовой отбор
- •Механизмы культурной эволюции
- •Взаимодействия
- •Оглавление
- •Глава 16: Дрейф генов
- •Глава 17: Плата за отбор
- •Глава 24: Способы видообразования
- •Глава 30: Эволюция крупных групп
- •Глава 31: Концепция макроэволюции и её типы
Гибридная стерильность у Drosophila paulistorum
Drosophita paulistorum — группа видов, состоящая из ряда зарождающихся видов или полувидов, обитающих в Центральной и Южной Америке. Гибриды между некоторыми из этих полувидов стерильны. Скрещивания между другими полувидами дают стерильных гибридных самцов. При иных скрещиваниях всё потомство оказывается плодовитым. Мужская стерильность в тех случаях, когда она существует, частично определяется факторами, которые передаются через цитоплазму яйца. В конечном счете мужская стерильность гибридов обусловлена взаимодействием между этими цитоплазматическими факторами и хромосомами.
Предрасположенность к стерильности, таким образом, передается самками мух с определённой цитоплазматической конституцией их гибридным потомкам мужского пола. Следовательно, возможно такое положение, когда скрещивание в одном направлении (например, самка Санта-Марта × самец Мезитас) даёт в F1 стерильных самцов, а реципрокное скрещивание (самка Мезитас × самец Сайта-Марта) даёт в F1 фертильных самцов (Ehrman, Williamson, 1965; Williamson, Ehrman, 1967*).
Уильямсон и Эрман (Williamson, Ehrman, 1967*) приготовили гомогенат из цитоплазмы яиц линии Сайта-Марта и ввели этот гомогенат самкам линии Мезитас. Обработанных таким образом самок Мезитас скрестили затем с самцами Сайта-Марта. Обработанные самки Мезитас (в отличие от необработанных самок этой линии) производили стерильных мужских гибридов. Мужская стерильность индуцировалась инъекцией родителю женского пола цитоплазмы особого типа.
Какова природа цитоплазматических факторов, обусловливающих стерильность? На электронных микрофотографиях репродуктивных тканей стерильных самцов выявляется присутствие в цитоплазме частиц, сходных с микоплазмами (Ehrman, Kernaghan, 1971; Daniels, Ehrman, 1974*).
Согласно более поздним данным (Somerson et al., 1984*), мужская стерильность коррелирует с присутствием в клетках L-форм стрептококков.
Вероятная гипотеза, позволяющая объяснить эти разные группы фактов, состоит в том, что в клетках некоторых полувидов группы Drosophila paulistorum живут в качестве симбионтов микоплазмы или подобные им организмы. У этих полувидов хромосомные гены так хорошо «подогнаны» к зараженной цитоплазме, что нормальная плодовитость не нарушается. Однако при скрещиваниях, в которых эти несущие симбионтов полувиды используются в качестве родительской особи женского пола, а не содержащие симбионтов линии — в качестве особи мужского пола, возникают сочетания цитоплазмы и хромосомных генов, «не подогнанные» друг к другу. Фенотипическим проявлением такого взаимодействия между цитоплазмой и ядром является мужская стерильность гибридов (Williamson, Ehrman, 1967; Ehrman, Kernaghan, 1971*).
Экспериментальная трансформация у растений
Попытки экспериментально вызвать генетическую трансформацию у растений до сих пор были либо неудачными, либо давали лишь частично успешные или неубедительные результаты (Kleinhofs, Behki, 1977; Hess, 1977; Сое, Neuffer, 1977; Schiemann, 1982; Barton, Brill, 1983*).
Неожиданные и загадочные результаты были получены в ранних экспериментах со льном (Linum usitatissimum). В исходных поколениях разные растения льна выращивали, внося в почву различные дозы N, Р и К; растения реагировали на разные условия обычным образом, т. е. мощным ростом и высоким урожаем. Эта стандартная фенотипическая реакция не должна была сохраняться в последующих поколениях, выращиваемых в обычных условиях. Однако в данном случае потомки индуцированных крупных растений сохраняли крупные размеры, несмотря на снижение содержания в почве питательных веществ, а потомки индуцированных мелких растений оставались мелкими даже при повышении уровня питательных веществ. Индуцированные различия размеров сохранялись на протяжении 10 поколений. Скрещивания между полученными таким образом крупными и мелкими растениями давали в F1 гибриды промежуточных размеров. Эти наследственные различия размеров, по-видимому, не связаны с цитоплазмой (Durrant, 1962a, b*). В более поздних исследованиях между крупными и мелкими линиями были обнаружены различия в содержании ДНК в ядрах; у потомков индуцированных крупных растений оно было выше (Evans et al., 1966; Timmis, Ingle, 1974*). Воздействие питательных веществ индуцировало изменения в количестве ДНК с повторами; эта ДНК содержит последовательности, кодирующие РНК рибосом, в которых происходит синтез белка (Marx, 1984*).
Сходные индуцированные изменения размеров, связанные с количеством вносимых в почву питательных веществ, наблюдались на протяжении трёх поколений у растений махорки (Nicotiana rustica) (Hill, 1967*).
В экспериментах на Nicotiana, проведенных Пэнди (Pandey, 1976; 1978; 1980*), использовался метод двойного опыления. Женское родительское растение опыляли смесью живой пыльцы одного генетического типа и убитой облучением пыльцы другого типа. Мёртвая пыльца способна прорастать и вводить свою ДНК в зародышевый мешок, но не способна производить оплодотворение. Генетические маркеры, содержащиеся в мертвой пыльце, появляются в некоторых особях F1; их судьба была прослежена На протяжении двух последующих поколений. По-видимому, участки хромосом, несущие гены-маркеры мертвой пыльцы, попадают в ядро яйцеклетки и включаются в него*.