
- •Грант Верн. Эволюция организмов Предисловие редактора перевода
- •Предисловие к русскому изданию
- •Предисловие
- •Глава 1 Постановка проблемы
- •Разнообразие органического мира
- •Приспособление (адаптация)
- •Адаптивный ландшафт
- •Глава 2 Решение проблемы Сотворение или эволюция
- •Доказательства эволюции
- •Полемика с креационизмом
- •Объяснения эволюции
- •Синтетическая теория
- •Другие теории
- •Глава 3 Воспроизводящаяся популяция
- •Структура популяции
- •Популяции Мамонтова дерева
- •Полиморфизм
- •Полиморфизм по группам крови у человека
- •Полиморфизм по ферментам
- •Гетерозиготность и норма
- •Концепция популяции
- •Глава 4 Статика популяций Закон Харди — Вайнберга
- •Частоты аллелей
- •Формула Харди — Вайнберга
- •Эффекты инбридинга
- •Заключение
- •Глава 5 Динамика популяций Определение микроэволюции
- •Микроэволюционные изменения у Drosophila pseudoobscura
- •Главные факторы эволюции
- •Взаимодействие между факторами эволюции
- •Заключение
- •Глава 6 Мутационный процесс
- •Генные мутации
- •Типы точковых мутаций
- •Генотипический контроль
- •Адаптивная ценность
- •Относительное значение в эволюции малых мутаций и макромутаций
- •Вероятность сохранения новой мутации
- •Давление мутаций
- •Глава 7 Расселение и поток генов
- •Определения
- •Расселение
- •Типы расселения
- •Области расселения
- •Интенсивность иммиграции
- •Поток генов
- •Расселение во времени
- •Поток генов во времени
- •Быть может, мы занижаем оценки расселения?
- •Заключение
- •Глава 8 Рекомбинация
- •Процесс рекомбинации
- •Количество генотипической изменчивости
- •Рекомбинация и мутагенез
- •Адаптивная ценность
- •Рекомбинация и сложность
- •Роль рекомбинации в эволюции
- •Глава 9 Соседства
- •Панмиктическая единица
- •Концепция соседства
- •Область, занимаемая соседством, и его величина
- •Эволюционные свойства больших популяций с соседствами различной величины
- •Оценка величины соседств
- •Глава 10 Основная теория отбора
- •Однолокусная модель
- •Коэффициент отбора
- •Скорость изменения и его степень
- •Приспособленность
- •Дарвиновская концепция отбора
- •Различия между дарвиновской и популяционно-генетической концепциями отбора
- •Компоненты приспособленности
- •Глава 11 Экспрессия генов в связи с отбором
- •Относительность селективной ценности
- •Пластичность фенотипа
- •Плейотропия
- •Модификаторы экспрессивности
- •Модификаторы доминантности
- •Генотип как единица отбора
- •Глава 12 Примеры отбора
- •Иллинойсский эксперимент по селекции кукурузы
- •Жизнеспособность у дрозофилы
- •Меланизм у березовой пяденицы
- •Окраска раковины у наземных улиток
- •Устойчивость к токсинам
- •Одомашнивание
- •Эволюция кукурузы
- •Глава 13 Эффекты плотности и частоты Конкуренция
- •Смеси генотипов в условиях конкуренции
- •Факторы, зависящие от плотности
- •Отбор, зависящий от частоты
- •Жесткий и мягкий отбор
- •Глава 14 Типы индивидуального отбора
- •Направленный отбор
- •Стабилизирующий отбор
- •Дизруптивный отбор
- •Дизруптивный отбор в природе
- •Уравновешивающий отбор
- •Превосходство гетерозигот у Drosophila pseudoobscura
- •Факторы, благоприятствующие полиморфизму
- •Глава 15 Уровни отбора
- •Отбор на субиндивидуальных уровнях
- •Половой отбор
- •Признаки самцов, связанные с драками между ними
- •Репродуктивное поведение у снежного барана и у благородного оленя
- •Признаки, определяющие привлекательность самцов
- •Междемовый отбор
- •Социально-групповой отбор
- •Альтруизм
- •Отбор на видовом уровне
- •Глава 16 Дрейф генов Общие соображения
- •Эффект величины популяции
- •Эффект отбора
- •Эффект потока генов
- •Закрепление сочетаний генов
- •Экспериментальные данные
- •Дрейф в природных популяциях
- •Аллели, определяющие группы крови в популяциях человека
- •Заключение
- •Глава 17 Плата за отбор Генетический груз
- •Полиморфизм по белкам и сегрегационный груз
- •Плата за отбор по Холдейну
- •Плата за отбор и скорость эволюции
- •Сцепление генов и взаимодействие генов и их влияние на ограничение, налагаемое платой за отбор
- •Влияние структуры популяции на ограничение, налагаемое платой за отбор
- •Другие способы сокращения платы за отбор
- •Глава 18 Фенотипические модификации Что такое приобретённый признак?
- •Фенотипическая пластичность
- •Приспособительные свойства фенотипических модификаций
- •Роль фенотипических модификаций в эволюции
- •Глава 19 Генетическая трансформация
- •Трансформация и трансдукция у бактерий
- •Экспериментальная трансформация у животных
- •Гибридная стерильность у Drosophila paulistorum
- •Экспериментальная трансформация у растений
- •Трансформация в природе
- •Обесцвечивание у Euglena
- •Обсуждение
- •Глава 20 Расы и виды
- •Популяционные системы
- •Аллопатрия и симпатрия
- •Непрерывная географическая изменчивость
- •Разобщенные географические расы
- •Экологические расы
- •Биологические виды
- •Полувиды
- •Типы видов
- •Виды у унипарентальных организмов
- •Вид в таксономии
- •Глава 21 Изолирующие механизмы Классификация
- •Экологическая и временная изоляция
- •Механическая изоляция, этологическая изоляция и изоляция гамет
- •Преграды, создаваемые несовместимостью, и нежизнеспособность гибридов
- •Стерильность гибридов
- •Разрушение гибридов
- •Сочетания изолирующих механизмов
- •Глава 22 Экологические взаимоотношения
- •Межвидовая конкуренции
- •Конкурентное исключение
- •Замещение видов
- •Сосуществование видов
- •Отбор, направленный на экологическую дифференциацию
- •Смещение признаков
- •Экологическая ниша
- •Влияние экологических требований
- •Глава 23 Образование рас и постепенное видообразование Эволюционная дивергенция
- •Факторы, участвующие в образовании рас
- •Роль отбора в образовании рас
- •Роль дрейфа генов
- •Роль интрогрессии
- •Роль потока генов
- •Зарождающаяся репродуктивная изоляция
- •Географическая теория видообразования
- •Перекрывающиеся кольца рас
- •Реверсии дивергенции
- •Глава 24 Способы видообразования
- •Квантовое видообразование
- •Сопоставление географического и квантового видообразования
- •Примеры квантового видообразования
- •Квантовое видообразование с участием хромосомных перестроек
- •Видообразование путем аллополиплоидии
- •Гибридное видообразование у растений
- •Проблема симпатрического видообразования
- •Смежно-симпатрическое видообразование
- •Биотически-симпатрическое видообразование
- •Стасипатрическое видообразование
- •Глава 25 Общая теория видообразования
- •Глава 26 Отбор, направленный на создание репродуктивной изоляции
- •Процесс отбора
- •Фактические данные
- •Гибридная несовместимость у Gilia
- •Этологическая изоляция
- •История вопроса
- •Глава 27 Геологическое время Основные этапы в истории Земли
- •Возникновение жизни
- •Начальные этапы эволюции
- •Стадия сложных многоклеточных организмов
- •Обсуждение
- •Глава 28 Направленная эволюция
- •Примеры
- •Эволюционные ряды у Equidae
- •Направления эволюции зубов у лошадей
- •Микроэволюционные аспекты направлений эволюции зубов у лошадей
- •Адаптивная природа направлений эволюции в семействе лошадей
- •Адаптивные аспекты правила Копа
- •Глава 29 Скорости эволюции Измерение скоростей
- •Различия в скоростях
- •Классификация скоростей эволюции
- •Факторы, оказывающие влияние на скорости эволюции
- •Факторы среды
- •Эволюционный потенциал популяционных структур разных типов
- •Иерархии питания и размножения
- •Изменчивость
- •Продолжительность генерации
- •Глава 30 Эволюция крупных групп
- •Происхождение и развитие
- •Скачкообразное развитие или постепенная дивергенция?
- •Роль квантовой эволюции
- •Адаптивная радиация
- •Адаптивная радиация у гавайских цветочниц
- •Класс птиц
- •Глава 31 Концепция макроэволюции и её типы Подходы и путеводные нити
- •Адаптивный ландшафт
- •Необратимость
- •Анагенез и кладогенез
- •Адаптивная радиация
- •Конвергенция и параллельное развитие
- •Ортогенез или ортоселекция?
- •Сетчатая эволюция
- •Квантовая эволюция
- •Квантовое видообразование
- •Генетические революции
- •Филетические направления и видообразовательные направления
- •Квантовые видообразовательные направления
- •Прерывистые равновесия
- •Глава 32 Молекулярная эволюция
- •Различия в последовательностях аминокислот
- •Гибридизация днк
- •Молекулярные взаимосвязи у гоминоидов
- •Теория нейтральности
- •Скорости молекулярной эволюции
- •Глава 33 Онтогенез и филогенез
- •Педоморфоз
- •Рекапитуляция
- •Относительные скорости роста
- •Генетика развития
- •Регуляция
- •Канализация
- •Глава 34 Специализация и прогресс Специализация
- •Направления специализации
- •Ограничения и преадаптация
- •Преадаптация к опылению колибри
- •Концепция прогресса в эволюции
- •Прогрессивная эволюция как форма специализации
- •Сукцессия град
- •Глава 35 Физические и биотические факторы Типы факторов
- •Различия между физическими и биотическими факторами
- •Сочетания биотических факторов
- •Редкие случаи инвазии изолированных сообществ
- •Различные соотношения физических и биотических факторов
- •Роль физических и биотических факторов в прогрессивной эволюции
- •Глава 36 Вымирание
- •Некоторые плейстоценовые и постплейстоценовые копытные
- •Саблезубые кошки
- •Массовое вымирание североамериканских млекопитающих в позднем кайнозое
- •Ниже будут рассмотрены три гипотезы о причинах вымирания.
- •Динозавры
- •Массовое вымирание в позднем мелу
- •Астероидная теория
- •Периоды массового вымирания
- •Глава 37 Биологические аспекты Система классификации приматов
- •Гоминоиды
- •Наследие древесного образа жизни
- •Наследие наземного образа жизни
- •Расовая изменчивость
- •Заключение
- •Глава 38 Социальные факторы Сообщества у приматов, не принадлежащих к антропоидам
- •Язык приматов
- •Интеллект и способность к научению у обезьян
- •Антропоиды
- •Культурная эволюция
- •Социализация
- •Символический язык и концептуальное мышление
- •Эволюционная природа человека
- •Глава 39 Факторы, определяющие эволюцию человека
- •Зависимость между органической и культурной эволюцией
- •Типы отбора
- •Социально-групповой отбор
- •Интеллект
- •Межвидовой отбор
- •Механизмы культурной эволюции
- •Взаимодействия
- •Оглавление
- •Глава 16: Дрейф генов
- •Глава 17: Плата за отбор
- •Глава 24: Способы видообразования
- •Глава 30: Эволюция крупных групп
- •Глава 31: Концепция макроэволюции и её типы
Фенотипическая пластичность
Генотип — это совокупность всех генов данного организма, а фенотип — совокупность его признаков и свойств. От генотипа к фенотипу ведут длительные и сложные процессы действия генов и развития. Эти процессы протекают в определённой среде и находятся под её влиянием. Фенотипическое проявление признака представляет собой, таким образом, результат действия двух наборов факторов: генотипических детерминант и условий среды, в которой происходит развитие.
Любой генотип способен дать начало определённому спектру фенотипов, каждый из которых реализуется в определённых условиях среды. В этом смысле генотип можно представить себе как «норму реакции» (Johannsen, 1911*). Иными словами, действие генотипа нельзя считать ни жестко предопределённым, ни неограниченным: генотип может детерминировать ряд фенотипических признаков в пределах, установленных самим генотипом (Johannsen, 1911*).
Диапазон фенотипической изменчивости длины метелки и сроков цветения в различных средах был измерен в разных «семьях» однолетнего растения — костра мягкого (Bromus mollis) (Jain, 1978*). Между «семьями» были обнаружены большие различия по степени фенотипической пластичности. Некоторые генотипы порождают крайне разнообразные фенотипы; другие генотипы дают фенотипы с более узким диапазоном разнообразия.
Широкий спектр фенотипических проявлений легко продемонстрировать у растений, способных к вегетативному размножению. Для этого достаточно взять одно растение, разделить его на части и размножать эти части при различных условиях среды в фитотроне или в вегетационном домике.
Хорошим примером служит экспериментальное изучение реакций на внешние условия у сложноцветных группы Achillea millefolium (Clausen, Keck, Hiesey, 1948*), многолетних травянистых растений, которые можно размножать вегетативным путем. В Пасадене (шт. Калифорния) части одного и того же растения выращивали в разных камерах фитотрона, а также в открытом грунте зимой. Регулируемые среды различались по продолжительности светового периода, дневным и ночным температурам.
В типичном эксперименте шесть частей одного растения Achillea borealis из Сьюарда (Аляска) выращивали в течение 3.5 мес в пяти регулируемых средах в фитотроне и в шестой среде — открытом грунте. Различные ростовые реакции, наблюдавшиеся к концу экспериментального периода, изображены на рис. 18.1. Генотип этого растения обеспечивал хороший рост в одних условиях (длинные теплые дни) и слабый рост в других (короткие дни). Другие генотипы этого же вида реагировали на эти условия по-иному (Clausen, Keck, Hiesey, 1948*).
Приспособительные свойства фенотипических модификаций
Фенотипические реакции на нормальные изменения среды обычно носят приспособительный характер. Это можно видеть на примере листьев растений, находящихся на свету и в тени. У листьев, находящихся в тени («теневые листья»), площадь поверхности больше, что увеличивает их фотосинтетическую способность и компенсирует более низкую освещённость, тогда как у листьев, находящихся на солнце («солнечные листья»), площадь поверхности меньше, что понижает транспирацию и потери воды. Один и тот же генотип способен обеспечить развитие листьев этих двух типов в условиях сильной и слабой освещённости. Генетически детерминированная способность растения к таким различным фенотипческим реакциям даёт ему возможность приспосабливаться к варьирующим условиям освещёния.
|
Рис. 18.1. Ростовые реакции отдельных частей одного растения Achillea borealis из Сьюарда (Аляска) в шести разных условиях. Первое число — дневная температура, а второе — ночная. Продолжительность периода роста составляла 3.5 мес. (Clausen, Keck, Hisey, 1948.*) |
Диапазон фенотипческой модифицируемости в разных крупных группах высших организмов весьма различен. Высшие растения, и в частности травянистые растения, характеризуются большой фенотипической пластичностью. Противоположную крайность представляют насекомые, отличающиеся крайне низкой фенотипической гибкостью.
Эти различия в пластичности непосредственно связаны с различиями в типах развития этих двух групп. Растительный организм развивается из точек роста, которые подвержены сильному воздействию факторов среды, преобладающих в период формирования его новых частей, так что «солнечные листья» появляются на ярком свету, а «теневые листья» — при слабой освещённости и т. д. В отличие от этого организм взрослого насекомого развивается внутри твердого наружного скелета, который формируется на одной из предшествующих стадий развития. Главные внешние свойства организма насекомого закладываются задолго до того, как они приобретают функциональное значение, и успевают принять окончательную форму к тому времени, когда они могут быть использованы.
Помимо этих различий в типах развития между растениями и насекомыми существуют более глубокие различия в стратегиях приспособления особей к колеблющимся условиям среды. Насекомые подвижны, а растения прикреплены к определённому месту. Взрослые насекомые в известных пределах могут приспосабливаться к переменным факторам среды, переходя в более теплое место в холодную погоду или в более влажное — при засухе, т. е. выбирая себе наиболее подходящее местообитание. Растение же, удерживаемое на одном месте корнями, не имеет выбора; для него главным средством индивидуального приспособления к изменениям среды служит способность к фенотвпическим модификациям.
Как типы фенотипических модификаций, так и диапазон фенотипической изменчивости зависят от потребностей организма. Поэтому весьма вероятно, что генотипы подвергались отбору на способность к проявлению приспособительных фенотипических реакций при изменении условий среды.