
- •Грант Верн. Эволюция организмов Предисловие редактора перевода
- •Предисловие к русскому изданию
- •Предисловие
- •Глава 1 Постановка проблемы
- •Разнообразие органического мира
- •Приспособление (адаптация)
- •Адаптивный ландшафт
- •Глава 2 Решение проблемы Сотворение или эволюция
- •Доказательства эволюции
- •Полемика с креационизмом
- •Объяснения эволюции
- •Синтетическая теория
- •Другие теории
- •Глава 3 Воспроизводящаяся популяция
- •Структура популяции
- •Популяции Мамонтова дерева
- •Полиморфизм
- •Полиморфизм по группам крови у человека
- •Полиморфизм по ферментам
- •Гетерозиготность и норма
- •Концепция популяции
- •Глава 4 Статика популяций Закон Харди — Вайнберга
- •Частоты аллелей
- •Формула Харди — Вайнберга
- •Эффекты инбридинга
- •Заключение
- •Глава 5 Динамика популяций Определение микроэволюции
- •Микроэволюционные изменения у Drosophila pseudoobscura
- •Главные факторы эволюции
- •Взаимодействие между факторами эволюции
- •Заключение
- •Глава 6 Мутационный процесс
- •Генные мутации
- •Типы точковых мутаций
- •Генотипический контроль
- •Адаптивная ценность
- •Относительное значение в эволюции малых мутаций и макромутаций
- •Вероятность сохранения новой мутации
- •Давление мутаций
- •Глава 7 Расселение и поток генов
- •Определения
- •Расселение
- •Типы расселения
- •Области расселения
- •Интенсивность иммиграции
- •Поток генов
- •Расселение во времени
- •Поток генов во времени
- •Быть может, мы занижаем оценки расселения?
- •Заключение
- •Глава 8 Рекомбинация
- •Процесс рекомбинации
- •Количество генотипической изменчивости
- •Рекомбинация и мутагенез
- •Адаптивная ценность
- •Рекомбинация и сложность
- •Роль рекомбинации в эволюции
- •Глава 9 Соседства
- •Панмиктическая единица
- •Концепция соседства
- •Область, занимаемая соседством, и его величина
- •Эволюционные свойства больших популяций с соседствами различной величины
- •Оценка величины соседств
- •Глава 10 Основная теория отбора
- •Однолокусная модель
- •Коэффициент отбора
- •Скорость изменения и его степень
- •Приспособленность
- •Дарвиновская концепция отбора
- •Различия между дарвиновской и популяционно-генетической концепциями отбора
- •Компоненты приспособленности
- •Глава 11 Экспрессия генов в связи с отбором
- •Относительность селективной ценности
- •Пластичность фенотипа
- •Плейотропия
- •Модификаторы экспрессивности
- •Модификаторы доминантности
- •Генотип как единица отбора
- •Глава 12 Примеры отбора
- •Иллинойсский эксперимент по селекции кукурузы
- •Жизнеспособность у дрозофилы
- •Меланизм у березовой пяденицы
- •Окраска раковины у наземных улиток
- •Устойчивость к токсинам
- •Одомашнивание
- •Эволюция кукурузы
- •Глава 13 Эффекты плотности и частоты Конкуренция
- •Смеси генотипов в условиях конкуренции
- •Факторы, зависящие от плотности
- •Отбор, зависящий от частоты
- •Жесткий и мягкий отбор
- •Глава 14 Типы индивидуального отбора
- •Направленный отбор
- •Стабилизирующий отбор
- •Дизруптивный отбор
- •Дизруптивный отбор в природе
- •Уравновешивающий отбор
- •Превосходство гетерозигот у Drosophila pseudoobscura
- •Факторы, благоприятствующие полиморфизму
- •Глава 15 Уровни отбора
- •Отбор на субиндивидуальных уровнях
- •Половой отбор
- •Признаки самцов, связанные с драками между ними
- •Репродуктивное поведение у снежного барана и у благородного оленя
- •Признаки, определяющие привлекательность самцов
- •Междемовый отбор
- •Социально-групповой отбор
- •Альтруизм
- •Отбор на видовом уровне
- •Глава 16 Дрейф генов Общие соображения
- •Эффект величины популяции
- •Эффект отбора
- •Эффект потока генов
- •Закрепление сочетаний генов
- •Экспериментальные данные
- •Дрейф в природных популяциях
- •Аллели, определяющие группы крови в популяциях человека
- •Заключение
- •Глава 17 Плата за отбор Генетический груз
- •Полиморфизм по белкам и сегрегационный груз
- •Плата за отбор по Холдейну
- •Плата за отбор и скорость эволюции
- •Сцепление генов и взаимодействие генов и их влияние на ограничение, налагаемое платой за отбор
- •Влияние структуры популяции на ограничение, налагаемое платой за отбор
- •Другие способы сокращения платы за отбор
- •Глава 18 Фенотипические модификации Что такое приобретённый признак?
- •Фенотипическая пластичность
- •Приспособительные свойства фенотипических модификаций
- •Роль фенотипических модификаций в эволюции
- •Глава 19 Генетическая трансформация
- •Трансформация и трансдукция у бактерий
- •Экспериментальная трансформация у животных
- •Гибридная стерильность у Drosophila paulistorum
- •Экспериментальная трансформация у растений
- •Трансформация в природе
- •Обесцвечивание у Euglena
- •Обсуждение
- •Глава 20 Расы и виды
- •Популяционные системы
- •Аллопатрия и симпатрия
- •Непрерывная географическая изменчивость
- •Разобщенные географические расы
- •Экологические расы
- •Биологические виды
- •Полувиды
- •Типы видов
- •Виды у унипарентальных организмов
- •Вид в таксономии
- •Глава 21 Изолирующие механизмы Классификация
- •Экологическая и временная изоляция
- •Механическая изоляция, этологическая изоляция и изоляция гамет
- •Преграды, создаваемые несовместимостью, и нежизнеспособность гибридов
- •Стерильность гибридов
- •Разрушение гибридов
- •Сочетания изолирующих механизмов
- •Глава 22 Экологические взаимоотношения
- •Межвидовая конкуренции
- •Конкурентное исключение
- •Замещение видов
- •Сосуществование видов
- •Отбор, направленный на экологическую дифференциацию
- •Смещение признаков
- •Экологическая ниша
- •Влияние экологических требований
- •Глава 23 Образование рас и постепенное видообразование Эволюционная дивергенция
- •Факторы, участвующие в образовании рас
- •Роль отбора в образовании рас
- •Роль дрейфа генов
- •Роль интрогрессии
- •Роль потока генов
- •Зарождающаяся репродуктивная изоляция
- •Географическая теория видообразования
- •Перекрывающиеся кольца рас
- •Реверсии дивергенции
- •Глава 24 Способы видообразования
- •Квантовое видообразование
- •Сопоставление географического и квантового видообразования
- •Примеры квантового видообразования
- •Квантовое видообразование с участием хромосомных перестроек
- •Видообразование путем аллополиплоидии
- •Гибридное видообразование у растений
- •Проблема симпатрического видообразования
- •Смежно-симпатрическое видообразование
- •Биотически-симпатрическое видообразование
- •Стасипатрическое видообразование
- •Глава 25 Общая теория видообразования
- •Глава 26 Отбор, направленный на создание репродуктивной изоляции
- •Процесс отбора
- •Фактические данные
- •Гибридная несовместимость у Gilia
- •Этологическая изоляция
- •История вопроса
- •Глава 27 Геологическое время Основные этапы в истории Земли
- •Возникновение жизни
- •Начальные этапы эволюции
- •Стадия сложных многоклеточных организмов
- •Обсуждение
- •Глава 28 Направленная эволюция
- •Примеры
- •Эволюционные ряды у Equidae
- •Направления эволюции зубов у лошадей
- •Микроэволюционные аспекты направлений эволюции зубов у лошадей
- •Адаптивная природа направлений эволюции в семействе лошадей
- •Адаптивные аспекты правила Копа
- •Глава 29 Скорости эволюции Измерение скоростей
- •Различия в скоростях
- •Классификация скоростей эволюции
- •Факторы, оказывающие влияние на скорости эволюции
- •Факторы среды
- •Эволюционный потенциал популяционных структур разных типов
- •Иерархии питания и размножения
- •Изменчивость
- •Продолжительность генерации
- •Глава 30 Эволюция крупных групп
- •Происхождение и развитие
- •Скачкообразное развитие или постепенная дивергенция?
- •Роль квантовой эволюции
- •Адаптивная радиация
- •Адаптивная радиация у гавайских цветочниц
- •Класс птиц
- •Глава 31 Концепция макроэволюции и её типы Подходы и путеводные нити
- •Адаптивный ландшафт
- •Необратимость
- •Анагенез и кладогенез
- •Адаптивная радиация
- •Конвергенция и параллельное развитие
- •Ортогенез или ортоселекция?
- •Сетчатая эволюция
- •Квантовая эволюция
- •Квантовое видообразование
- •Генетические революции
- •Филетические направления и видообразовательные направления
- •Квантовые видообразовательные направления
- •Прерывистые равновесия
- •Глава 32 Молекулярная эволюция
- •Различия в последовательностях аминокислот
- •Гибридизация днк
- •Молекулярные взаимосвязи у гоминоидов
- •Теория нейтральности
- •Скорости молекулярной эволюции
- •Глава 33 Онтогенез и филогенез
- •Педоморфоз
- •Рекапитуляция
- •Относительные скорости роста
- •Генетика развития
- •Регуляция
- •Канализация
- •Глава 34 Специализация и прогресс Специализация
- •Направления специализации
- •Ограничения и преадаптация
- •Преадаптация к опылению колибри
- •Концепция прогресса в эволюции
- •Прогрессивная эволюция как форма специализации
- •Сукцессия град
- •Глава 35 Физические и биотические факторы Типы факторов
- •Различия между физическими и биотическими факторами
- •Сочетания биотических факторов
- •Редкие случаи инвазии изолированных сообществ
- •Различные соотношения физических и биотических факторов
- •Роль физических и биотических факторов в прогрессивной эволюции
- •Глава 36 Вымирание
- •Некоторые плейстоценовые и постплейстоценовые копытные
- •Саблезубые кошки
- •Массовое вымирание североамериканских млекопитающих в позднем кайнозое
- •Ниже будут рассмотрены три гипотезы о причинах вымирания.
- •Динозавры
- •Массовое вымирание в позднем мелу
- •Астероидная теория
- •Периоды массового вымирания
- •Глава 37 Биологические аспекты Система классификации приматов
- •Гоминоиды
- •Наследие древесного образа жизни
- •Наследие наземного образа жизни
- •Расовая изменчивость
- •Заключение
- •Глава 38 Социальные факторы Сообщества у приматов, не принадлежащих к антропоидам
- •Язык приматов
- •Интеллект и способность к научению у обезьян
- •Антропоиды
- •Культурная эволюция
- •Социализация
- •Символический язык и концептуальное мышление
- •Эволюционная природа человека
- •Глава 39 Факторы, определяющие эволюцию человека
- •Зависимость между органической и культурной эволюцией
- •Типы отбора
- •Социально-групповой отбор
- •Интеллект
- •Межвидовой отбор
- •Механизмы культурной эволюции
- •Взаимодействия
- •Оглавление
- •Глава 16: Дрейф генов
- •Глава 17: Плата за отбор
- •Глава 24: Способы видообразования
- •Глава 30: Эволюция крупных групп
- •Глава 31: Концепция макроэволюции и её типы
Рекапитуляция
Между изменениями в онтогенезе и в филогенезе существует параллелизм. Геккель (Haeckel, 1866*) положил это в основу своего знаменитого закона «Онтогенез есть повторение филогенеза». Геккелевская теория (рекапитуляции широко обсуждалась (см. Garstang, 1922; Rensch, 1959; Lovtrup, 1978*) и нередко отбрасывалась, однако, как отмечает Лёвтрап (Lovtrup, 1978*), в ней есть доля истины.
Филогенетические изменения иногда происходят путем прибавления к онтогенезу предков новых терминальных стадий (Rensch, 1959; Gould, 1977; Lovtrup, 1978*). Так, у саргана (Веlone) развились очень длинные челюсти, похожие на щипцы, благодаря продлению онтогенеза по сравнению с такими более консервативными родственными формами, как Atherina (Rensch, 1959*). Добавление новых терминальных стадий может сопровождаться ускорением развития, так что общая продолжительность онтогенеза остается более или менее постоянной (Gould, 1977*).
В тех случаях, когда имеют место такого рода онтогенетические изменения, онтогенез более продвинутой формы действительно проходит через стадии, соответствующие взрослым формам её филогенетических предков. В таких случаях можно говорить, что онтогенез повторяет филогенез.
Как отмечает Лёвтрап (Lovtrup, 1978*), закон рекапитуляции оказывается справедливым, когда эволюционное изменение выражается в терминальных надставках к процессу развития. Это особый, по-видимому, достаточно обычный, но не универсальный случай. Поэтому заключение Геккеля не является всеобщим законом, но вместе с тем оно не отвергнуто и остается полезным обобщением.
Параллелизм между онтогенетическими и филогенетическими изменениями был давно отмечен Бэром (Von Baer, 1828*), который сформулировал и истолковал его иначе. Концепция Бэра получила широкое признание.
Бэр (Von Baer, 1828*) отмечает, что сходство между зародышами родственных групп больше, чем между взрослыми особями этих же групп. Развивающийся зародыш проходит через ряд стадий, отражающих план строения тех различных групп, к которым он принадлежит, и притом в последовательности от более обширных групп к более подчиненным. В онтогенезе более общие признаки появляются раньше, чем более специальные; от признаков, характеризующих класс, семейство и род, развитие приводит к конечным видоспецифичным признакам (Garstang, 1922; Lovtrup, 1978*).
Концепция Бэра содержит в себе элемент рекапитуляции. Лёвтрап (Lоvtrup, 1978*) предлагает поэтому различать рекапитуляцию по Бэру и рекапитуляцию по Геккелю. Первая представляет собой более общую концепцию.
Лёвтрап (Lovtrup, 1978*) формулирует соотношение между онтогенезами в дивергентных филетических линиях следующим образам: «В процессе онтогенеза члены некой группы таксонов-близнецов следуют одним и тем же путем рекапитуляции вплоть до стадии их дивергенции на отдельные таксоны».
Относительные скорости роста
Морфологическая дивергенция между производной группой и её предком или между сестринскими линиями может вылиться, как мы видели, в онтогенетические различия, а последние в свою очередь — в различия по скоростям роста разных частей тела. Томпсон (Thompson, 1917, 1942, 1961*) использовал декартовы координаты для того, чтобы сравнивать дивергентные формы тела в родственных родах, принадлежащих к различным крупным группам животных: ракообразным, кишечнополостным, рыбам, рептилиям, птицам, млекопитающим. Примеры по рыбам показаны на рис. 33.1. Стандартный тип для каждой пары родственных форм изображен слева, а дивергентный, или «деформированный», — справа.
На рис. 33.1, А видно, что стандартный тип (слева) можно преобразовать в дивергентный тип (справа), повернув вертикальные оси на определённый угол. На рис. 33.1, Б связь дивергентного типа со стандартным можно выявить, переходя от прямоугольных координат к полярным. Другие способы преобразования показаны на рис. 33.1, В и Г.
Эти сравнения позволяют сделать вывод, что реальное филогенетическое изменение влечет за собой изменение относительных скоростей роста разных частей тела в процессе онтогенеза. Так, на рис. 33.1, В форма тела дивергентной взрослой особи сложилась в результате повышения по сравнению со стандартным типом скорости роста переднего конца тела и понижения скорости роста хвостовой части.
Дальнейшее развитие этих представлений воплощено в концепции аллометрического роста (Huxley, 1932; см. также Rensch, 1959*). Каждая часть тела имеет свою характерную и зачастую постоянную скорость роста в течение онтогенеза. Разные части тела нередко обладают различной скоростью роста. Соответственно пропорции тела детерминируются продолжительностью периода роста и размерами, достигаемыми на взрослой стадии.
Принцип аллометрии может быть распространен на сравнения между родственными видами или родами. Можно ожидать, что в родственных группах с различными размерами взрослых особей будут наблюдаться различные пропорции тела.
Рога у самцов оленя, например, обладают положительной аллометрией, так что с увеличением размеров тела увеличиваются и размеры рогов, причём не только абсолютно, но и по отношению к размерам тела. У мелких видов оленей рога очень небольшие, а у самого крупного из оленей современной эпохи — вымершего гигантского оленя Megaloceros giganteus — были чрезвычайно большие рога (Huxley, 1932; Simpson, 1949, 1967*).
Прогрессивное развитие рогов наблюдается у титанотериев — от раннего эоцена до раннего олигоцена, как показано на рис. 33.2 (Osborn, 1929*). У раннеэоценового титанотерия Eotitanops рогов не было (рис. 33.2, А). На лицевой части черепа средне- и позднеэоценовых титанотериев имелись небольшие костные бугры (рис. 33.2, В и В). Роговидные бугры средней величины имелись у раннеолигоценового рода Megacerops, a очень большие рога были у другого олигоценового рода, Вrопtotherium (рис. 33.2, Г).
|
Рис. 33.1. Сравнение формы тела у пар близких видов рыб с использованием декартовых координат. Для каждой пары слева изображен стандартный, а справа — «деформированный» тип. A. Argyropelecus olfersi (слева) и Sternoptyx diaphana (справа). Б. Scarus (слева) и Pomacanthus (справа). В. Polyprion (слева) и Pscudopriacantlius altus (справа). Г. Diodon (слева) и Orthagoriscus mola (справа), (D'Arcy Thompson, 1961.*) |
Это направление эволюции можно объяснить в терминах аллометрических скоростей роста. Рога титанотериев обладают положительной аллометрией, т. е. их относительные размеры возрастают с увеличением абсолютных размеров. У эоценовых и олигоценовых титанотериев наблюдается увеличение размеров тела (рис. 33.2). Если размеры тела не достигали некоторой пороговой величины, то рога не развивались. У более крупных животных рога были очень велики. Отбор на увеличение общих размеров тела, очевидно, приводил к коррелированному возрастанию относительной величины рогов (Huxley, 1932; 1942; Stanley, 1974*).
|
Рис. 33.2. Эволюция рога у титанотериев. A. Eotitanops borealis (ранний эоцен). Б. Manteoceras manteoceras (средний эоцен). В. Protitanotherium emarginatum (поздний эоцен). Г. Brontotherium platyceras (ранний олигоцен). (Osborn, 1929.*) |