Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
kolloidnaya_lektsii.doc
Скачиваний:
827
Добавлен:
09.04.2015
Размер:
2.6 Mб
Скачать

2.2.3. Факторы, влияющие на величину поверхностного натяжения

σ = f (Т, природы фаз, добавок и т. д.)

1. Температура т

С увеличением температуры поверхностное натяжение всегда уменьшается.

Это связано:

а) с усилением теплового движения молекул, что ведёт к ослаблению межмолекулярного взаимодействия, уменьшения внутреннего давления и как следствие, уменьшению σ.

б) с другой стороны, увеличивается давление насыщенного пара Ро , что ведет к увеличению концентрации молекул в газовой фазе, к уменьшению нескомпенсированности сил на поверхности раздела фаз и уменьшению поверхностного натяжения.

Для большинства неполярных жидкостей эта зависимость линейна вплоть до Ткр (критической температуры – когда исчезает граница раздела фаз между жидкостью и паром - см. критические параметры в справочнике, например, для Н2О: Ткр=373,9о С, Р= 217,7 атм; для С2Н5ОН: Ткр= 243,1оС, Ркр=63 атм):

Из графика (рис. 2.5.) видно, что

σ dσ/dТ < 0 и постоянна, а, следовательно, определить поверхностное натяжение при любой температуре можно по формуле:(2.18)

Ткр Т

Рис.2.5. Зависимость поверхностного натяжения неполярной жидкости от Т

Другие вещества менее строго следуют этой зависимости, но часто отклонениями можно пренебречь, т.к. dσ/dТ слабо зависит от температуры (для воды dσ/dТ= -0,16 10-3 Дж/м2).

2) природа фазы

Т.к. σ связано с работой, расходуемой на разрыв межмолекулярных связей, то оно ими и обусловлено.

Чем сильнее межмолекулярные связи в данной фазе, тем больше его поверхностное натяжение на границе с газовой фазой.

Поэтому σ у неполярных жидкостей ниже, чем у σ полярных. Большие значения поверхностного натяжения наблюдаются у веществ с водородными связями, например, Н2О.

Рассмотрим значения поверхностного натяжения некоторых веществ (табл. 2.2)

Таблица 2.2

Поверхностное натяжение веществ на границе с воздухом

(Т=298 К)

Жидкость

σ 103, Дж/м2

Твердое вещество

σ 103, Дж/м2

Н2О

71,95

Н2О (лед при 270 К)

120,0

С6Н6

28,2

Кварц. стекло

740

ССl4

25,02

Al

1909

C2H5OH

22,10

Fe

3959

C3H8O3 глицерин

59,4

С (алмаз), грань (111)

11400

Hg

473,5

У твердых тел межмолекулярные и межатомные взаимодействия больше на величину, определяющую ∆Нпл . Соответственно, они имеют большие значения σ или Gs. Для более тугоплавких веществ значения σ выше, что объясняется более прочными межмолекулярными связями.

3) Природа контактирующих фаз

Чем сильнее взаимодействие между контактирующими фазами, тем меньше поверхностное натяжение на границе раздела этих фаз.

В случае контакта двух несмешивающихся жидкостей ж12 нельзя пренебречь взаимодействием между молекулами на границе раздела фаз.

Наличие над слоем одной жидкости другой, несмешивающейся с первой, приводит к уменьшению σ, поскольку при взаимодействии между контактирующими фазами уменьшается нескомпенсированность сил на поверхности первой жидкости.

Поверхностное натяжение уменьшается тем сильнее, чем меньше различие в полярностях на границе раздела ж12. Жидкости, близкие по полярности, смешиваются друг с другом, и поэтому их σ1,2 может быть равным 0. Чем больше разность полярностей фаз, тем выше поверхностное натяжение на границе раздела фаз.

Приведем примеры (при Т=293 К):

σН2О/г = 72,75 мДж/м2

σН2О/С6Н6 = 34,11 мДж/м2

σН2О/СН3Сl = 27,7 мДж/м2

σН2О/эт.эфир = 10,0 мДж/м2

σН2О/С2Н5ОН= 0 мДж/м2, так как границы раздела между спиртом и водой не существует.

Если жидкости мало растворимы друг в друге, то как показал Антонов еще в 1908 г. σ на границе ж12 ≈ разности поверхностных натяжений взаимно насыщенных жидкостей на границе их с воздухом (правило Антонова):σ ж1/ж2 ≈ σ ж1/в - σ ж2/в (2.19)

  1. Влияние добавок

Поверхностное натяжение растворов отличается от поверхностного натяжения растворителя. Зависимость σж/г = f(С) при Т=const называется изотермой поверхностного натяжения. Знак dσ/dс указывает на характер зависимости σ от концентрации С. Условимся рассматривать изотерму поверхностного натяжения только для водных растворов, поэтому при С=0 поверхностное натяжение σо равно σн2о при данной температуре.

σ

2

1

3

с

Рис.2.6. Изотермы поверхностного натяжения на границе ж/г в зависимости от концентрации растворенного вещества

Для водных растворов различают 3 основных типов изотерм:

  1. поверхностно-неактивные вещества, не изменяющие поверхностное натяжение (кривая 1).

  2. поверхностно- инактивные вещества (электролиты), которые в воде диссоциируют с образованием ионов, которые хорошо гидратируются, т.к. Еион/н2о н2о/н2о, поэтому ионы интенсивно втягиваются вглубь раствора, dσ/dс > 0 (кривая 2).

Для границы раздела фаз вода - воздух это соли, щелочи, минеральные кислоты, т.е. любые соединения, образующие в растворе только неорганические ионы. Их действие объясняется следующим образом: силы притяжения ионов и диполей воды сильнее, чем диполей друг к другу, поэтому при растворении ПИВ в воде увеличиваются межмолекулярные взаимодействия в поверхностном слое, а, следовательно, увеличивается и σ.

Эффект увеличения σ от добавки ПИВ в воду обычно незначителен. Это видно из рис.2.5. Так, поверхностное натяжение чистой воды при 20°С равно 72,8 мДж/м2, для 1 % раствора NaOH оно составляет 73,0 мДж/м2 и лишь у 10% раствора NaOH ст достигает 77,5 мДж/м2.

  1. поверхностно-активные вещества, которые уменьшают поверхностное натяжение на границе раздела фаз (кривая 3).

Способность уменьшать поверхностное натяжение называется поверхностной активностью (2.20)

К ПАВ относятся органические молекулы с несимметричным строением молекул, состоящие из полярных и неполярных групп – с дифильным строением (рис.2.7):

полярная группа : -СООН; - -NO2; -СHO; - ОН; -NH2;SO2OH

неполярный углеводород-

ный радикал

Рис. 2.7. Условное изображение молекулы ПАВ

Полярные группы в воде гидратируются, неполярная часть молекул ПАВ представляют собой гидрофобную углеводородную цепь или радикал.

Молекула ПАВ из-за своего дифильного строения по-разному взаимодействует с молекулами воды в растворе: полярная часть легко гидратируется (благодаря этому идет растворение молекул ПАВ – этот процесс энергетически очень выгоден), неполярный углеводородный радикал, слабо взаимодействуя с водой, препятствует межмолекулярному взаимодействию диполей воды друг с другом.

Ен2о/н2о > Ен2о/ПАВ (напоминаем, что взаимодействие молекул воды друг с другом достаточно сильное – ориентационное, индукционное, дисперсионное, плюс водородные связи), поэтому энергетически выгоднее удалить неполярные длинные углеводородные радикалы из объема.

В результате на поверхности образуется определённым образом ориентированный адсорбционный слой, в котором полярная часть обращена в воду, а неполярный радикал - в контактирующую фазу (например, в воздух). При этом уменьшается избыточная поверхностная энергия, а, следовательно, и поверхностное натяжение.

Кривая 3 на рис. 2.6. характеризует зависимость σ=f(С) для водных растворов полярных органических веществ с не очень длинными цепями и недиссоциирующими или слабодиссоциирующими группами алифатических спиртов, аминов, жирных кислот. Для них поверхностное натяжение падает сначала линейно, затем по логарифмическому закону.

Этот тип зависимости σ=f(С) хорошо описывается эмпирическим уравнением Шишковского: σ= σо – В ln(1+A С). (2.21)

Физический смысл коэффициентов А и В мы обсудим несколько позже.

(Значение константы А возрастает в 3-3,5 раза при переходе к гомологу, а В = RTГ∞, где Г— предельная адсорбция)

Обычно не даю, чтобы не путать:

Существует большая группа ПАВ с большим гидрофобным радикалом и сильно гидратирующейся полярной группой. В растворах таких соединений с увеличением концентрации до некоторой критической величины – ККМ (критической концентрации мицеллообразования) образуются мицеллы – агрегаты из ориентированных молекул ПАВ. Поверхностное натяжение таких растворов определяется индивидуальными молекулами ПАВ, т.к. мицеллы почти не снижают поверхностное натяжение раствора – кривая 4.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]