Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
kolloidnaya_lektsii.doc
Скачиваний:
777
Добавлен:
09.04.2015
Размер:
2.6 Mб
Скачать

4.3.2.Реологические свойства структурированных жидкообразных систем

Рассмотрим течение нестационарных жидкообразных систем. Они, как правило, обладают коагуляционной структурой. Минимальная концентрация дисперсной фазы, при которой возникает структура, называется критической концентрацией структурообразования.

Тиксотропия — специфическое свойство систем с коагуляционной структурой. При разрушении структуры происходит разрыв контактов между частицами дисперсной фазы. Восстановление структуры — возобновление этих контактов благодаря подвижности среды и броуновскому движению частиц.

Чем медленнее восстанавливается структура после снятия нагрузки и чем медленнее она разрушается, тем сильнее выражено явление тиксотропии. Степень тиксотропичности можно оценить графически по площади петли гистерезиса на графике зависимости =f(P).

2

1

Р

Рис.4.16. реологическая кривая структурированной жидкости: 1 — равновесная кривая, 2 — после снятия нагрузки

С явлением тиксотропии связано образование плывунов, оползней. При бурении скважин (нефтяных) бур проходи через пласты, содержащие глину, кварц. Если бурение проходит с чистой водой, то при бурении может образоваться суспензия, схватывающая бур. Поэтому при бурении используют тиксотропный глиняный раствор (суспензия бентонита).

Явление тиксотропии можно наблюдать, если концентрированный гель путем встряхивания перевести в золь (количество жидкости достаточно, чтобы частицы совершали броуновское движение). При снятии нагрузки частицы опять образуют структуру. Тиксотропные системы используют в формовке, т.к. объем такой системы незначительно изменяется при превращении золя в гель. Хорошие краски под действием кисти разжижаются и следы кисти сглаживаются.

Тиксотропные золи с палочкообразной или пластинчатой формой частиц быстрее образуют структуру, если поворачивать пробирку. Фрейндлих делал подобный опыт с золем оксида ванадия W2O5, имеющего частицы палочкообразной формы. Без перемешивания золь образовывал структуру 60 мин, при перемешивании — 15 с.

Это явление называется реопексией(«рео» — теку — греч.) — восстановлением структуры со временем под действием небольшой нагрузки.

Изменение вязкости в системе с псевдопластическим течением невелики. Более резко вязкость изменяется в связнодисперсных системах с коагуляционной структурой. В этом случае можно рассматривать целый спектр состояний между разрушенной и неразрушенной структурами. В зависимости от приложенного напряжения сдвига Р реологические свойства таких систем могут меняться от свойств, присущих твердообразным системам, до свойств, характерных для ньютоновских жидкостей.

Это разнообразие в реологическом поведен и реальной дисперсной системы с коагуляционной структурой описывается по Ребиндеру полной реологической кривой.

Рис.4.17. Кривая течения и соответствующая ей зависимость вязкости от напряжения сдвига Р для реальной структурированной жидкости (по П.А.Ребиндеру).

Вработах П.А. Ребиндера, а также других авторов было установлено, что даже в области P < Pk наблюдается медленное течение без видимого разрушения структуры, и кривые течения имеют вид, изображенный на рис.4.17. На участке ОА эта система ведет себя подобно ньютоновской жидкости с большой вязкостью max = Ctg1 (наибольшая ньютоновская вязкость). Такое поведение системы объясняется тем, что при малых скоростях течения структура, разрушаемая приложенным напряжением, успевает восстанавливаться. Такое медленное течение с постоянной вязкостью без прогрессирующего разрушения структуры называют ползучестью1.

Замечено, что оконные стёкла древних замков и монастырей имеют утолщение в нижней части. Это можно объяснить ползучестью за многовековое их стояние в рамах. Правда, специалисты утверждают, что в средние века технология производства стёкол была такова, что равномерную толщину их по всей площади получить было нельзя. Один конец должен был быть толще другого изначально. Но, спрашивается, почему эти утолщения всегда внизу? Должно быть, равновероятное их расположение вверху и внизу рам.

Если вплавить пробку в гудрон и оставить стоять, то, как утверждают литературные источники, по прошествии нескольких десятков лет она «выплывёт» на поверхность. Это также пример течения без видимого разрушения структуры, т.е. ползучести.

Для слабоструктурированных систем начальный прямолинейный участок кривой обычно небольшой, и его практически невозможно обнаружить. Для сильно структурированных систем область значений Р, при которых наблюдается ползучесть, может быть весьма значительной. Напряжение Рk соответствует началу разрушения структуры. При дальнейшем увеличении напряжения сдвига (участок АВ) зависимость dU/dx = f(P) теряет линейный характер, при этом вязкость уменьшается, что является следствием разрушения структуры. В точке В кривой течения структура системы практически разрушена. Напряжение сдвига, отвечающее этой точке, называют предельным напряжением сдвига Pm. При P > Pm, когда структура разрушена, система течет подобно ньютоновской жидкости, имеющей вязкость min = Ctg2 (наименьшая ньютоновская вязкость).

ηmax/ ηmin = от 106до 10-2Па с (для суспензии бентонитовой глины).

Прочность структуры можно оценить по Рmи отношениюηmax/ ηmin.

Рассмотрим течение дисперсной системы — водной суспензии охры — при разных концентрациях частиц дисперсной фазы.

γ1 2 3 4 5

Р

Рис.4.18. Реологические кривые течения водной суспензии охры при разных концентрациях частиц дисперсной фазы.

1 — 6,6%; 2 — 9,1% — системы с ньютоновским течением при полном отсутствии структуры

3 — 17,7% — с 9,1% до 17,7% — течение структурированных жидкообразных тел (характерна для свободнодисперных систем при с < скр. Линейный участок отвечает кривой при малых Р.

Структурные элементы разрушаются, но время их восстановления < времени разрушения.

При увеличении Р структура разрушается и не восстанавливается. Экстраполяция этой части кривой позволяет получить Рт, характеризующее прочность структуры. Напоминает кривую псевдопластического течения. Но:здесьвязкость падает из-за тиксотропии, атам— из-за мгновенной ориентации частиц.

      1. Реологические свойства твердообразных систем

Для всех этих систем имеется значительный предел текучести Рт.

Хрупкое тело разрушается при Р< Рт (предел хрупкости). Деление твердых тел на упругие, пластичные, хрупкие до известной степени условно, т.к. деформация зависит от условий течения, типа Р, времени действия Р и др. факторов.

Пример хрупких – неорганические бетон, керамика;

пластичных – металлы,

для органических полимеров характерно высокоэластичное и вязкотекучее состояние.

Твердообразные системы можно разделить на:

Бингамовские небингамовские

n=1 n<1, - псевдопластическое твердообразное тело

n>1, пластическое дилатантное тело

Общая формула, описывающая течение этих систем, может быть представлена в следующем виде:

Р = Рт + ()n, (4.14)

их реологические кривые сдвинуты относительно начала координат на Рт:

3

1

2

Ртр

η 2

1

3

Р

Рис. 4.19. Реологические кривые твердообразных тел

Твердообразные и жидкообразные тела отличаются не только наличием Рт, но и поведением при развитии деформации. Для твердообразных тел увеличение напряжения сдвига разрушает тело, а у структурированных жидкостей с ростом нагрузки совершается переход к ньютоновскому течению, отвечающему предельно разрушенной структуре.

Имеетеся множество систем с промежуточными структурно-механическими свойствами.

По реологическим свойствам к бингамовским твердообразным системам можно отнести буровые растворы, масляные краски, зубные пасты с небольшим Рт.

Для типично твердообазных тел характерен большой Рт.

Для твердообразных тел с коагуляционной структурой реологические кривые представлены на рис.4.20:

ƞ

Рст Рт Ркр Р

Рис.4.20. Реологические кривые твердообразных тел с коагуляционной структурой

При Рст начинается разрушение структуры. После снятия нагрузки до разрушения структура восстанавливается (тиксотропия) в системах со свободной упаковкой. При плотной1 упаковке этого не происходит.

С увеличением прочности структуры увеличивается Р т, а область текучести сужается. Такие системы обладают свойством формуемости, которое используется в керамических производствах.

Реологические свойства твердообразных систем с конденсационно-кристаллизационной структурой

В этих системах течение не является типичным свойством, реологические кривые строят в координатах γ= f(P).

γ

р1 р2 ркр Р

Рис.4.221. Реологические кривые твердообразных тел с конденсационно-кристаллизационной структурой

до р1 – закон Гука, р1 – предел упругости

до р2 – пластическое течение твердообразных систем

ркр – предел прочности, разрушение тела

Размеры участков могут быть самыми различными в зависимости от природы и условий испытания. Для керамики, бетона (кристаллическая структура) – участок до р1, полимеры с конд. структурой проявляют релаксационные явления, промежуточные свойства наблюдаются у металлов и сплавов.

Лекция10

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]