- •Коллоидная химия
- •1.Коллоидные системы и предмет коллоидной химии
- •1.1. Коллоидные системы
- •1.2. Предмет коллоидной химии
- •Первый вариант количественной оценки - основной
- •Например, у частицы кубической формы с размером ребра
- •1.3. Классификация дисперсных систем
- •Классификация коллоидных систем по агрегатному состоянию фаз
- •2. Физическая химия поверхностных явлений
- •2.1. Межмолекулярные связи
- •Отличия молекулярных сил притяжения от химических:
- •Вклад различных видов энергии в общую энергию притяжения молекул
- •2.2.1. Определения поверхностного натяжения
- •1. Поверхностное натяжение численно равно работе обратимого изотермического образования единицы поверхности
- •2.2.3. Факторы, влияющие на величину поверхностного натяжения
- •1. Температура т
- •Поверхностное натяжение веществ на границе с воздухом
- •3) Природа контактирующих фаз
- •2.2.4. Экспериментальные методы определения поверхностного натяжения
- •2.3. Внутренняя (полная) удельная поверхностная энергия
- •Термодинамические характеристики поверхности некоторых жидкостей на границе их с воздухом
- •2.4. Адсорбция
- •2.4.1. Основные понятия и определения
- •2.4.2.1.Уравнение Ленгмюра(*)
- •Основные положения теории Ленгмюра:
- •Экспериментальное определение констант уравнения Ленгмюра
- •Правило Дюкло — Траубе:
- •Экспериментальное определение геометрических размеров молекулы пав
- •2.4.2.3. Изотермы адсорбции на неоднородной поверхности
- •А) теория Поляни(*)
- •Основные положения теории Поляни:
- •Основные положения теории бэт
- •Основные характеристики адсорбентов
- •Классификация адсорбентов:
- •2. По полярности
- •3. По размеру пор
- •2.4.5.2. Влияние кривизны поверхности на равновесие фаз
- •2.4.5.3. Капиллярные явления
- •2.4.5.4.Теория капиллярной конденсации
- •Условия действия капиллярных сил
- •2.4.5.5. Классификация изотерм адсорбции
- •2.4.6. Адсорбция из растворов на твердых адсорбентах
- •2.4.6.1. Молекулярная адсорбция
- •2.4.6.1.2. Основные закономерности адсорбции из растворов неэлектролитов на поверхности твердых адсорбентов)
- •2. Природа растворителя
- •3. Влияние природы адсорбента
- •4. Влияние природы адсорбтива
- •2.4.6.1.2. Основные закономерности адсорбции из растворов электролитов на поверхности твердых адсорбентов.
- •2.4.6.1.3. Ионно-обменная адсорбция
- •2.5. Смачивание. Адгезия. Когзия
- •2.5.1. Адгезия. Когзия
- •Механизм процесса адгезии
- •Несколько механизмов и теорий адгезии
- •2.5.2. Краевой угол смачивания и работа адгезии
- •2.5.3. Избирательное смачивание
- •2.5.4. Инверсия смачиваемости поверхности
- •2.5.5. Количественные характеристики процесса смачивания поверхности.
- •Qсм и b порошкообразных веществ
- •2.5.6. Измерение краевого угла смачивания
- •Использование пав для изменения смачиваемости поверхности
- •Избирательное смачивание
- •3. Молекулярно-кинетические свойства дисперсных систем
- •3.2. Диффузия в коллоидных системах
- •3.3. Седиментация суспензий
- •3.3. Седиментационно-диффузионное равновесие. Седиментационная устойчивость
- •Седиментационная устойчивость
- •4. Модель реального тела. Модель Бингама(*) – вязкопластическое тело
- •Лекция 9. .4.3. Реологические свойства реальных тел
- •Классификация тел по их реологическим свойствам
- •Вязкость агрегативно устойчивых дисперсных систем
- •4.3.2.Реологические свойства структурированных жидкообразных систем
- •Электрические свойства коллоидных растворов (золей)
- •5.1. Электрокинетические явления
- •5.2. Механизм образования дэс
- •4. Поляризация поверхности за счёт внешнего электрического поля.
- •5.3. Строение дэс
- •5.4. Факторы, влияющие на величину ζ-потенциала:
- •5.5.3. Влияние температуры на электрокинетический потенциал
- •5.5.4. Влияние рН среды
- •5.5.5. Экспериментальное определение - потенциала
- •6.Коагуляция и устойчивость дисперсных систем
- •6.1. Устойчивость дисперсных систем
- •6.2. Факторы агрегативной устойчивости
- •6.3. Ионный фактор стабилизации дисперсных систем Теория устойчивости лиофобных золей длфо
- •6.4. Коагуляция лиофобных дисперсных систем
- •6.4.1. Основные закономерности электролитной коагуляции
- •6.4.2. Кинетика электролитной коагуляции
- •6.4.3. Частные случаи электролитной коагуляции
- •6.4.4. Коллоидная защита
- •7. Лиофильные дисперсные системы. Коллоидные поверхностно-активные вещества
- •Классификация и общая характеристика пав
- •Коллоидные пав
- •2. Гидрофильно-липофильный баланс
- •Групповые числа атомных группировок
- •Применение пав
- •3. Строение мицелл пав. Солюбилизация
- •Факторы, влияющие на ккм
- •1) В растворах ипав ↑ Сэл-та ↓ ккм.
- •2) Добавление органических веществ в водные растворы пав по-разному влияет на ккм:
- •3). Влияние температуры т.
- •Значение мицеллярных растворов
- •Лиофобные дисперсные системы. Эмульсии
- •Классификация
- •Устойчивость и стабилизация эмульсий
- •Эмульгаторы
- •Механизм стабилизации:
Первый вариант количественной оценки - основной
D= 1/d и Sуд = S /V , (1.1)
где d – минимальный размер частицы, S – суммарная площадь межфазной поверхности, V- объем тела.
Например, у частицы кубической формы с размером ребра
d = 10-8м Sуд = 6 d2/ d3= 6/ d = 6 *108м-1
Для нити сечением d2= 10-8 * 10-8 Sуд = 4* 108м-1
Для пластины толщиной d= 10-8 м Sуд = 2 *108м-1
Для систем, содержащих частицы сферической формы с радиусом r Sуд = 4 π r2 / 4/3 π r3 = 3/ r
Второй вариант ( в учебнике МГУ — Щукина ):
D= S /V , (1.2)
где S –суммарная площадь межфазной поверхности,V -объем тела,
Sуд = S /∑m = D / ρ, гдеρ=плотность данного вещества.
Итак, коллоидные системы имеют два характерных признака:
1. гетерогенность
2 дисперсность.
Безусловно, первый из них имеет превалирующее значение для коллоидных систем, поскольку в отсутствие границы раздела фаз поверхностные явления не возникают.
1.3. Классификация дисперсных систем
Дисперсные системы можно классифицировать по различным признакам:
По размеру частиц дисперсной фазы:
первый вариант:
а) высокодисперсные d = 10-9 – 10-7 м (1-100 нм)
б) среднедисперсные d = 10-7 – 10-5 м
в) грубодисперсные d > 10-5 м
предпочитаю давать второй вариант (учебник МГУ):
а) наносистемы (ультрадисперсные) d = 1 - 10 нм
б) высокодисперсные d = 10 нм - 1 мкм
в) грубодисперсные d = 1 - 100 мкм
По фракционному составу:
а) монодисперсные
б) полидисперсные
По концентрации частиц дисперсной фазы (учебник МГУ):
а) малая
б) большая
По характеру распределения фаз (учебник МГУ):
а) сплошное распределение – континуальное
б) сетка тонких прослоек – биконтинуальное
По взаимодействию между частицами дисперсной фазы (по кинетическим свойствам)
а) свободно-дисперсные (при малой концентрации дисперсной фазы в жидкой и газообразной дисперсных средах)
б) связно-дисперсные (при большой концентрации дисперсной фазы – биконтинуальное распределение – либо в твердой дисперсионной среде)
По взаимодействию между частицами дисперсной фазы и дисперсионной средой:
а) лиофильные - хорошо сольватирующиеся лиофильные дисперсные системы образуются путём самопроизвольного диспергирования, термодинамически устойчивы.
Пример:растворы коллоидных ПАВ (образующих мицеллы при концентрации выше ККМ) и растворы полимеров.
Несмотря на то, что эти системы - гомогенны, тем не менее, они относятся к объектам изучения коллоидной химии, так как размеры агрегатов коллоидных ПАВ и макромолекул полимеров соизмеримы с размерами частиц дисперсной фазы в коллоидных системах, что проявляется в некоторых свойствах этих истинных растворов.
б) Все остальные коллоидные системы - лиофобные – неустойчивые, обладающие избытком поверхностной энергии, получаются путем принудительного диспергирования, в них самопроизвольно идут процессы по укрупнению частиц (коагуляции, разрушения). При слипании таких частиц поверхностная энергия уменьшается. По этой причине в коллоидные системы необходимо добавлять стабилизаторы.
По агрегатному состоянию фаз (табл. 1.1)
Таблица 1.1