- •Коллоидная химия
- •1.Коллоидные системы и предмет коллоидной химии
- •1.1. Коллоидные системы
- •1.2. Предмет коллоидной химии
- •Первый вариант количественной оценки - основной
- •Например, у частицы кубической формы с размером ребра
- •1.3. Классификация дисперсных систем
- •Классификация коллоидных систем по агрегатному состоянию фаз
- •2. Физическая химия поверхностных явлений
- •2.1. Межмолекулярные связи
- •Отличия молекулярных сил притяжения от химических:
- •Вклад различных видов энергии в общую энергию притяжения молекул
- •2.2.1. Определения поверхностного натяжения
- •1. Поверхностное натяжение численно равно работе обратимого изотермического образования единицы поверхности
- •2.2.3. Факторы, влияющие на величину поверхностного натяжения
- •1. Температура т
- •Поверхностное натяжение веществ на границе с воздухом
- •3) Природа контактирующих фаз
- •2.2.4. Экспериментальные методы определения поверхностного натяжения
- •2.3. Внутренняя (полная) удельная поверхностная энергия
- •Термодинамические характеристики поверхности некоторых жидкостей на границе их с воздухом
- •2.4. Адсорбция
- •2.4.1. Основные понятия и определения
- •2.4.2.1.Уравнение Ленгмюра(*)
- •Основные положения теории Ленгмюра:
- •Экспериментальное определение констант уравнения Ленгмюра
- •Правило Дюкло — Траубе:
- •Экспериментальное определение геометрических размеров молекулы пав
- •2.4.2.3. Изотермы адсорбции на неоднородной поверхности
- •А) теория Поляни(*)
- •Основные положения теории Поляни:
- •Основные положения теории бэт
- •Основные характеристики адсорбентов
- •Классификация адсорбентов:
- •2. По полярности
- •3. По размеру пор
- •2.4.5.2. Влияние кривизны поверхности на равновесие фаз
- •2.4.5.3. Капиллярные явления
- •2.4.5.4.Теория капиллярной конденсации
- •Условия действия капиллярных сил
- •2.4.5.5. Классификация изотерм адсорбции
- •2.4.6. Адсорбция из растворов на твердых адсорбентах
- •2.4.6.1. Молекулярная адсорбция
- •2.4.6.1.2. Основные закономерности адсорбции из растворов неэлектролитов на поверхности твердых адсорбентов)
- •2. Природа растворителя
- •3. Влияние природы адсорбента
- •4. Влияние природы адсорбтива
- •2.4.6.1.2. Основные закономерности адсорбции из растворов электролитов на поверхности твердых адсорбентов.
- •2.4.6.1.3. Ионно-обменная адсорбция
- •2.5. Смачивание. Адгезия. Когзия
- •2.5.1. Адгезия. Когзия
- •Механизм процесса адгезии
- •Несколько механизмов и теорий адгезии
- •2.5.2. Краевой угол смачивания и работа адгезии
- •2.5.3. Избирательное смачивание
- •2.5.4. Инверсия смачиваемости поверхности
- •2.5.5. Количественные характеристики процесса смачивания поверхности.
- •Qсм и b порошкообразных веществ
- •2.5.6. Измерение краевого угла смачивания
- •Использование пав для изменения смачиваемости поверхности
- •Избирательное смачивание
- •3. Молекулярно-кинетические свойства дисперсных систем
- •3.2. Диффузия в коллоидных системах
- •3.3. Седиментация суспензий
- •3.3. Седиментационно-диффузионное равновесие. Седиментационная устойчивость
- •Седиментационная устойчивость
- •4. Модель реального тела. Модель Бингама(*) – вязкопластическое тело
- •Лекция 9. .4.3. Реологические свойства реальных тел
- •Классификация тел по их реологическим свойствам
- •Вязкость агрегативно устойчивых дисперсных систем
- •4.3.2.Реологические свойства структурированных жидкообразных систем
- •Электрические свойства коллоидных растворов (золей)
- •5.1. Электрокинетические явления
- •5.2. Механизм образования дэс
- •4. Поляризация поверхности за счёт внешнего электрического поля.
- •5.3. Строение дэс
- •5.4. Факторы, влияющие на величину ζ-потенциала:
- •5.5.3. Влияние температуры на электрокинетический потенциал
- •5.5.4. Влияние рН среды
- •5.5.5. Экспериментальное определение - потенциала
- •6.Коагуляция и устойчивость дисперсных систем
- •6.1. Устойчивость дисперсных систем
- •6.2. Факторы агрегативной устойчивости
- •6.3. Ионный фактор стабилизации дисперсных систем Теория устойчивости лиофобных золей длфо
- •6.4. Коагуляция лиофобных дисперсных систем
- •6.4.1. Основные закономерности электролитной коагуляции
- •6.4.2. Кинетика электролитной коагуляции
- •6.4.3. Частные случаи электролитной коагуляции
- •6.4.4. Коллоидная защита
- •7. Лиофильные дисперсные системы. Коллоидные поверхностно-активные вещества
- •Классификация и общая характеристика пав
- •Коллоидные пав
- •2. Гидрофильно-липофильный баланс
- •Групповые числа атомных группировок
- •Применение пав
- •3. Строение мицелл пав. Солюбилизация
- •Факторы, влияющие на ккм
- •1) В растворах ипав ↑ Сэл-та ↓ ккм.
- •2) Добавление органических веществ в водные растворы пав по-разному влияет на ккм:
- •3). Влияние температуры т.
- •Значение мицеллярных растворов
- •Лиофобные дисперсные системы. Эмульсии
- •Классификация
- •Устойчивость и стабилизация эмульсий
- •Эмульгаторы
- •Механизм стабилизации:
Вязкость агрегативно устойчивых дисперсных систем
В ряде случаев вязкость коллоидных систем практически не отличается от вязкости дисперсных систем. Ниже определенной скорости течения наблюдается ламинарное течение и подчинение законам Ньютона и Пуазейля.
Например, при ламинарном течении золей Au, Ag, Pt, As2S3, AgI и т.д. также справедливы законы Ньютона и Пуазейля. С другой стороны, часто наблюдаются большие отклонения от поведения нормальных жидкостей. Эйнштейном было показано, что введение в среду частиц дисперсной фазы приводит к увеличению вязкости системы. Он установил связь между вязкостью раствора и концентрацией дисперсной фазы для коллоидных систем.
Эту зависимость передает уравнение Эйнштейна:
= 0(1 + ) или уд = =, (4.11)
где - коэффициент формы частиц (для сферических частиц= 2.5, для удлиненных частиц> 2,5);уд- удельная вязкость.
Следовательно, в отсутствие взаимодействия частиц среды с изометрическими частицами система ведет себя как ньютоновская жидкость, но с повышенной вязкостью.
Объемная концентрация рассчитывается по следующей формуле:
(4.12)
η а б дисп.система
ньютон.ж
.
Р
Рис. 4.14. Зависимость вязкости от напряжения сдвига при ламинарном (а) и турбулентном (б) режимах течения для ньютоновских жидкостей и агрегативно устойчивых дисперсных систем.
Графическое представление уравнения (4.11) - прямая 1 на рис.4.14.
Рис.4.15. Зависимость вязкости систем от объёмной концентрации дисперсной фазы: 1 – линейная (уравнение Эйнштейна); 2 – для реальных систем с равноосными частицами; 3 – для систем с вытянутыми частицами дисперсной фазы.
С увеличением концентрации дисперсной фазы возрастает взаимодействие между частицами, и обнаруживаются cильные отклонения от уравнения Эйнштейна. Вязкость концентрированных систем растет с увеличениемпочти по экспоненте (линия 2 на рис.4.15), для них наблюдается зависимость вязкости от напряжения сдвига, т.е. закон Ньютона не выполняется. Эти отклонения от закона Ньютона и уравнения Эйнштейна обычно обусловлены взаимодействием частиц и образованием структуры, в которой частицы дисперсной фазы определенным образом ориентированы относительно друг друга (структурирование систем).
Зависимость вязкости таких систем от объёмной концентрации фазы даже при малых не подчиняется уравнению Эйнштейна (кривая 3 на рис.4.15). Для описания зависимостиотобычно используют уравнение:
= 0exp() или = 0(1 + + b2 +..) (4.13)
Условия применения уравнения Эйнштейна:
Сферические твердые частицы,
Разбавленная и устойчивая дисперсная система,
Пробег частиц мал по сравнению с пробегом системы,
Несжимаемая система,
Течение жидкости носит ламинарный характер,
Между частицами отсутствует скольжение.
Реальные дисперсные системы не подчиняются уравнению Эйнштейна по следующим причинам:
Наличие у частиц адсорбционных, сольватных слоев, а также ДЭС
Взаимодействие частиц дисперсной фазы,
Турбулезация потока,
Анизометричность частиц,
Временная флуктуация.