- •Коллоидная химия
- •1.Коллоидные системы и предмет коллоидной химии
- •1.1. Коллоидные системы
- •1.2. Предмет коллоидной химии
- •Первый вариант количественной оценки - основной
- •Например, у частицы кубической формы с размером ребра
- •1.3. Классификация дисперсных систем
- •Классификация коллоидных систем по агрегатному состоянию фаз
- •2. Физическая химия поверхностных явлений
- •2.1. Межмолекулярные связи
- •Отличия молекулярных сил притяжения от химических:
- •Вклад различных видов энергии в общую энергию притяжения молекул
- •2.2.1. Определения поверхностного натяжения
- •1. Поверхностное натяжение численно равно работе обратимого изотермического образования единицы поверхности
- •2.2.3. Факторы, влияющие на величину поверхностного натяжения
- •1. Температура т
- •Поверхностное натяжение веществ на границе с воздухом
- •3) Природа контактирующих фаз
- •2.2.4. Экспериментальные методы определения поверхностного натяжения
- •2.3. Внутренняя (полная) удельная поверхностная энергия
- •Термодинамические характеристики поверхности некоторых жидкостей на границе их с воздухом
- •2.4. Адсорбция
- •2.4.1. Основные понятия и определения
- •2.4.2.1.Уравнение Ленгмюра(*)
- •Основные положения теории Ленгмюра:
- •Экспериментальное определение констант уравнения Ленгмюра
- •Правило Дюкло — Траубе:
- •Экспериментальное определение геометрических размеров молекулы пав
- •2.4.2.3. Изотермы адсорбции на неоднородной поверхности
- •А) теория Поляни(*)
- •Основные положения теории Поляни:
- •Основные положения теории бэт
- •Основные характеристики адсорбентов
- •Классификация адсорбентов:
- •2. По полярности
- •3. По размеру пор
- •2.4.5.2. Влияние кривизны поверхности на равновесие фаз
- •2.4.5.3. Капиллярные явления
- •2.4.5.4.Теория капиллярной конденсации
- •Условия действия капиллярных сил
- •2.4.5.5. Классификация изотерм адсорбции
- •2.4.6. Адсорбция из растворов на твердых адсорбентах
- •2.4.6.1. Молекулярная адсорбция
- •2.4.6.1.2. Основные закономерности адсорбции из растворов неэлектролитов на поверхности твердых адсорбентов)
- •2. Природа растворителя
- •3. Влияние природы адсорбента
- •4. Влияние природы адсорбтива
- •2.4.6.1.2. Основные закономерности адсорбции из растворов электролитов на поверхности твердых адсорбентов.
- •2.4.6.1.3. Ионно-обменная адсорбция
- •2.5. Смачивание. Адгезия. Когзия
- •2.5.1. Адгезия. Когзия
- •Механизм процесса адгезии
- •Несколько механизмов и теорий адгезии
- •2.5.2. Краевой угол смачивания и работа адгезии
- •2.5.3. Избирательное смачивание
- •2.5.4. Инверсия смачиваемости поверхности
- •2.5.5. Количественные характеристики процесса смачивания поверхности.
- •Qсм и b порошкообразных веществ
- •2.5.6. Измерение краевого угла смачивания
- •Использование пав для изменения смачиваемости поверхности
- •Избирательное смачивание
- •3. Молекулярно-кинетические свойства дисперсных систем
- •3.2. Диффузия в коллоидных системах
- •3.3. Седиментация суспензий
- •3.3. Седиментационно-диффузионное равновесие. Седиментационная устойчивость
- •Седиментационная устойчивость
- •4. Модель реального тела. Модель Бингама(*) – вязкопластическое тело
- •Лекция 9. .4.3. Реологические свойства реальных тел
- •Классификация тел по их реологическим свойствам
- •Вязкость агрегативно устойчивых дисперсных систем
- •4.3.2.Реологические свойства структурированных жидкообразных систем
- •Электрические свойства коллоидных растворов (золей)
- •5.1. Электрокинетические явления
- •5.2. Механизм образования дэс
- •4. Поляризация поверхности за счёт внешнего электрического поля.
- •5.3. Строение дэс
- •5.4. Факторы, влияющие на величину ζ-потенциала:
- •5.5.3. Влияние температуры на электрокинетический потенциал
- •5.5.4. Влияние рН среды
- •5.5.5. Экспериментальное определение - потенциала
- •6.Коагуляция и устойчивость дисперсных систем
- •6.1. Устойчивость дисперсных систем
- •6.2. Факторы агрегативной устойчивости
- •6.3. Ионный фактор стабилизации дисперсных систем Теория устойчивости лиофобных золей длфо
- •6.4. Коагуляция лиофобных дисперсных систем
- •6.4.1. Основные закономерности электролитной коагуляции
- •6.4.2. Кинетика электролитной коагуляции
- •6.4.3. Частные случаи электролитной коагуляции
- •6.4.4. Коллоидная защита
- •7. Лиофильные дисперсные системы. Коллоидные поверхностно-активные вещества
- •Классификация и общая характеристика пав
- •Коллоидные пав
- •2. Гидрофильно-липофильный баланс
- •Групповые числа атомных группировок
- •Применение пав
- •3. Строение мицелл пав. Солюбилизация
- •Факторы, влияющие на ккм
- •1) В растворах ипав ↑ Сэл-та ↓ ккм.
- •2) Добавление органических веществ в водные растворы пав по-разному влияет на ккм:
- •3). Влияние температуры т.
- •Значение мицеллярных растворов
- •Лиофобные дисперсные системы. Эмульсии
- •Классификация
- •Устойчивость и стабилизация эмульсий
- •Эмульгаторы
- •Механизм стабилизации:
2.5.5. Количественные характеристики процесса смачивания поверхности.
Среди этих характеристик можно назвать те, о которых мы уже говорили:
а) угол смачивания θ и cosθ
Различают равновесные и неравновесные краевые углы. Равновесные p определяются только значениями поверхностного натяжения (поверхностной энергии Гиббса) на границах раздела всех трех фаз. Равновесию отвечает минимум поверхностной энергии Гиббса, поэтому для каждой системы при данных внешних условиях p имеет только одно значение, определяемое по уравнению Юнга:
(2.123)
Неравновесных же краевых углов может быть множество. Далее в тексте индекс p будем опускать, подразумевая под равновесное его значение. Следует однако отметить, что в зависимости от условий проведения экспериментов (шероховатость поверхности, наличие неорганических ионов или ПАВ в смачивающей жидкости) измеренный краевой угол может существенно отличаться от Р.
Формирование капли жидкости на твёрдой поверхности в среде газа сопровождается наложением множества факторов: веса капли, шероховатости поверхности и т.п., учесть которые не представляется возможным. Поэтому истинные свойства поверхности можно установить лишь в условиях избирательного смачивания, когда капля исследуемой жидкости (1) помещена в фазу другой жидкости (2), несмешивающейся с первой. Уравнение Юнга в этом случае имеет вид:
(2.124)
Проанализируем это уравнение:
1. Если , то cos > 0 и < 900. Здесь условию самопроизвольности G < 0 отвечает процесс формирования такой капли, что 0 < < 900. Т.е. в данном случае в «конкурентной борьбе» за поверхность побеждает жидкость 1. Если это – вода, то твёрдая поверхность является гидрофильной, если это масло, то поверхность - олеофильная. При cos = 1 и = 00 происходит полное смачивание поверхности - растекание жидкости 1 по поверхности в виде тонкой пленки.
2. Если , то cos < 0 и > 900. В этом случае условию самопроизвольности G < 0 отвечает процесс формирования такой капли, что 900 < < 1800. Т.е. жидкость 2 вытесняет с поверхности жидкость 1. Если при этом жидкость 1 – вода, то поверхность олеофильная (гидрофобная), а если масло, то – гидрофильная (олеофобная).
б) работа адгезии Wa.;
в) теплота смачивания.
Количественно теплоту смачивания используют для оценки смачивания поверхности порошков. Количественно оценивают эту величину калориметрическим методом по теплоте смачивания, которая выделяется при погружении порошка в жидкость.
Смачивание приводит к образованию новой границы фаз: тв.т./ж вместо тв.т./г и сопровождается уменьшением поверхностной энергии. ∆Нсм= изменению полной поверхностной энергии 1 кг твердого вещества при перенесении его из воздуха в жидкость и связана с изменениемUsуравнения Гиббса — Гельмгольца.
Для гидрофильных поверхностей qсмводой большеqсммаслом (орг.ж.).
Характеристикой смачиваемости в этом случае является коэффициент гидрофильности b: (2.125)
Для гидрофильных поверхностей b>1.Рассмотрим данные по смачиваемости некоторых порошков (табл. 2.4):
Таблица 2.4