Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
1624
Добавлен:
17.03.2015
Размер:
37.6 Mб
Скачать

3.2. Требования, предъявляемые к конструкции гироскопических приборов

Как было показано в предыдущем разделе, гироскоп должен иметь. По возможности большой кинетический момент. Кинетический момент гироско­па — это произведение момента инерции ротора относительно оси вращения Iz на угловую скорость вращения H=IzΩ. Следовательно, можно увеличивать ки­нетический момент за счет увеличения момента инерции. Поскольку момент инерции тела вращения выражается форму

(3.1)

где т — масса тела; R — радиус, то выгодно массу ротора размещать по воз­можности на большем удалении от оси вращения. В связи с этим роторы гиромоторов имеют конфигурацию такую, как показано на рис. 3.3. Ротор гиромотора 1 одновременно является якорем асинхронного двигателя переменного то­ка; в якоре имеется беличье колесо. Статором же у такого двигателя является внутренняя обмотка 2.

Рис 3.3 гиромотор в разрезе: 1-ротор, 2-статор.

Конструкция ротора выбирается в основном из соображений максимального момента инерции и отсутствия деформаций ротора от действия центробежных сил, возникающих при вращении ротора.

Авиационные гиромоторы питаются трехфазным напряжением U= 36 В с частотой f = 400 Гц. Так как они являются асинхронными двигателями, облада­ющими скольжением, то обороты ротора гиромоторов п = 22000 ÷23000 об/мин. Существуют гиромоторы, имеющие существенно большие угловые скорости, но ввиду того, что ресурс работы подшипников таких гиромоторов обратно про­порционален угловой скорости ротора, в гражданской авиации их не применяют.

Рис 3.4 вращающиеся подшипники:

  1. ось, 2-внутреннее кольцо, 3- неподвижное кольцо

Рис 3.5 электромеханическая схема гироскопического подвеса

1- внутреннее кольцо, 2,4-средние кольца,4-наружное кольцо, Д1,Д2-двигатели

Поскольку способность гироскопа точно сохранять положение своей главной оси в пространстве зависит от величины моментов, действующих по осям его карданова подвеса, при конструировании гироскопов стараются свести эти мо­менты к минимуму.

В качестве опор для осей карданова подвеса гироскопа используют высоко­прецизионные подшипники качения с малыми моментами трения.

Для особо точных приборов, например, гироскопов для курсовых систем, применяют так называемые вращающиеся подшипники с двумя рядами шари­ков, причем внутреннее кольцо 2 (рис. 3.4) совершает принудительное вра­щение относительно оси 1 и неподвижного кольца 3.

На принципиальную возможность уменьшения влияния трения в подобных устройствах указал Н. Е. Жуковский. Идея Н. Е. Жуковского сводилась к сле­дующему: если имеется 100 натянутых ниток, на которых лежит какой-нибудь предмет, например, карандаш, то, перемещая все нити вправо, карандаш будет увлекаться ими за счет трения тоже вправо. Если перемещать нити влево, то и карандаш будет двигаться влево. Заставляя каждую четную нить двигаться вправо, а нечетную — влево, будем иметь карандаш неподвижным. Конечно, это при условии, что на каждую нить будет выпадать одинаковая доля массы ка­рандаша и коэффициент трения контактных поверхностей карандаш — нить вез­де одинаков. В этом примере трение не исчезает, оно только взаимно компенси­руется.

На рис. 3.5 представлена конструкция внутренней рамы карданопа под­веса (гироузла). Как видно из рисунка, внутренние кольца 2 и 4 левого и правого подшипников могут поворачиваться двигателями Д1 и Д2. Причем кольца вращаются с одинаковыми угловыми скоростями, но в противоположные сто­роны. Возникающие при этом силы трении воздействуют на внутреннюю ось гироскопа с помощью моментов, направления которых противоположны, поэто­му их суммарная величина оказывается близкой к нулю, и вредное воздействие моментов трения ослабляется. Сели даже суммарная величина моментов тре­ния заставляет гироскоп прецессировать с некоторой небольшой скоростью, то периодическим изменением направления вращения двигателей (с помощью пере­ключателя В со специальным кулачком) можно менять направление действия этого момента, а следовательно, и направление прецессии, что, в конечном сче­те уменьшает прецессию гироскопа от моментов трения в осях карданова под­веса С помощью такой схемы удается уменьшить собственные «уходы» гиро­скопа в несколько раз по сравнению с обычными подшипниками качения.

Рис 3.6 действие на гироскоп силы тяжести.

Существуют гироскопы с аэродинамическими подшипниками по осям кар­данова подвеса. Такой подшипник представляет собой втулку и ось, между ко­торыми имеется воздушный зазор и ось как бы «плавает» в воздухе. Такие под­шипники тоже имеют весьма малые моменты трения, но в гражданской авиа­ции в силу ряда причин пока не применяются.

Гироскоп должен быть тщательно сбалансирован, т. е. центр масс гиромотора должен совпадать с точкой пересечения осей карданова подвеса. В противном случае, как показано на рис. 3.6, на гироскоп действуют моменты от ускоре­ния силы тяжести.

Следует заметить, что при эксплуатации авиационных гироскопических приборов необходимо строго выполнять правила технической и летной эксплуа­тации, так как от этого зависит точность их работы и долговечность. Необхо­димо также помнить, что гироскопические приборы являются приборами доро­гостоящими.

3.3. Гироскопические асинхронные двигители

Гироскопический двигатель предназначен для разгона маховой массы за определенный промежуток времени до номинальной часто­ты вращения и для последующей ее стабилизации при минимальном потреблении энергии. В настоящее время широкое применение нашли электрические гироскопические двигатели и, в частности, асинхронные.

Асинхронный гироскопический двигатель (АГД) конструктивно объединен в одно целое с маховиком (рис.3.7). Для обеспечения при заданных габаритах и массе наибольшего кинетического момен­та

H = J , (3.2)

где J - момент инерции маховика относительно оси вращения; - угловая скорость, стремятся вращающуюся массу разместить на максимальном удалении от оси вращения. С этой целью применя­ют обращенную конструкцию асинхронного двигателя с внешним короткозамкнутым ротором 1 (рис.3.7) и с внутренним неподвиж­ным статором 2 . Для повышения кинетического момента внешний ротор располагают внутри специальной втулки 3, к которой крепятся крышки 4, 5. Втулка выполняется из латуни или бериллия.

Повышение кинетического момента при заданной массе внешнего ротора связано также с максимальным повышением его угловой скорости (частоты вращения n). Частота вращения современных АГД лежит в пределах n = 15000 60000 об/мин при числе пар полюсов р = 1; 2. Иногда для повышения частоты вращения АГД его питание осуществляют от автономного источника с повышенной частотой f = 500 2000 Гц. Максимум частоты вращения АГД ограничен, как правило, качеством шарикоподшипни­ков.

Отношение кинетического момента Н к массе АГД называют добротностью гироскопического двигателя. Ее повышение обеспечи­вается увеличением плотности материала частей конструкции, вра­щающихся на большом удалении от оси, и уменьшением ее для всех остальных элементов.

На валу АГД нет полезной нагрузки. Он работает в режиме хо­лостого хода, преодолевая моменты трения внешнего ротора о газовую среду и трения в подшипниках, при нулевом к.п.д. Условным к.п.д. АГД принято считать отношение мощности механических потерь к полной потребляемой мощности, характеризующее совершенство асинхронного двигателя в электромагнитном отношении. Величина условного к.п.д. в зависимости от мощности, конструктивного испол­нения и параметров АГД лежит в пределах = 0,2 0,9.

Рис. 3.7. Конструкция асинхронного гироскопического двигателя (АГД)

Для повышения стабильности частоты вращения при изменении плотности окружающей среди, связанной с изменением высоты полета летательного аппарата, номинальное скольжение АГД выбирают в пределах Sн = 0,015 0,12. В некоторых случаях с целью исключения влияния высоты полета на работу АГД его помешают в специальную газовую или вакуумную камеру. Снижение вентиляцион­ных потерь достигается в АГД полировкой внешней поверхности ротора.

Улучшение характеристик АГД путем увеличения массы ротора с другой стороны приводит к увеличению длительности процесса его запуска, которая лежит в пределах от десятков секунд до десятков минут. Для обеспечения приемлемых пусковых характеристик при проектировании АГД стремятся добиться кратности пускового момен­та Mп / Mн > 1,5, кратности максимального момента (перегрузоч­ной способности) MЭМ М / Mн = 2 5 и критического скольжения Sкр = 0,3  0,4. Под номинальным моментом АГД понимают сум­марный момент его потерь в номинальном режиме.

Поскольку АГД работает с нагрузкой, близкой по своему харак­теру к вентиляционной, то в процессе запуска избыточный электро­магнитный момент MЭМ меняется не существенно (рис. 3.8). При этом запуск происходит с практически постоянным ускорением. Для сокращения времени запуска иногда применяют запуск АГД при повышенном напряжении питания.

Рис.3.8. Механическая характеристика АГД

Стремление по возможности уменьшить суммарный момент по­терь, т.е. величины номинального скольжения и активной составля­ющей тока статора, обусловило характерную особенность АГД - от­носительно большой намагничивающий ток, достигающий 60 - 90% от номинального значения. Коэффициент мощности составляет при этом cos =0,4 + 0,8. Он будет тем меньшим, чем с меньшим скольжением работает АГД.

Для обеспечения максимальной точности к АГД предъявляется ряд специфических требований:

- механическая стабильность элементов конструкции и их соеди­нений, т.е. способность элементов конструкции сохранять постоян­ство положений центров масс в различных режимах работы и при различных внешних воздействиях;

- симметрия и жесткость конструкции в целом, связанные с необходимостью симметричного расположения (относительно продо­льной и поперечной осей симметрии) вращающихся и наиболее на­гретых элементов конструкции, имеющих значительную массу;

- минимум и постоянство в процессе работы потребляемой мощ­ности, т.е. нагрева АГД, и неравномерности распределения темпера­тур, что связано с уменьшением аэродинамических потерь (потерь на трение внешнего ротора о воздух), с обеспечением постоянства осевой нагрузки на подшипники и сохранности смазки, с применением подшипников, их сборок и смазки повышенного качества.

Реализация этих требований привела к созданию симметричных конструкций АГД, состоящих из минимального количества элементов. Так, например, внутренние дорожки качения подшипников (рис.3.7) часто изготавливаются непосредственно на оси, чем сокращается количество соединений деталей и повышается точность сборки.

В отличие от асинхронных машин обычного исполнения АГД не имеют осевого люфта в подшипниковых узлах. Требуемая жесткость конструкции обеспечивается предварительной осевой нагрузкой под­шипников, которая в процессе работы должна оставаться неизменной.

Симметрия и жесткость конструкции АГД достигаются примене­нием конструкционных материалов, имеющих одинаковый коэффициент расширения. Так, например, ось, крышки, кольца подшипников и ротор АГД выполняются из подшипниковой стали, а втулка - из бериллия.

Указанные особенности относятся также к синхронным гироско­пическим двигателям (СГД), в качестве которых находят широкое применение гистерезисные двигатели .

В гироскопах авиационных приборов, устанавливае­мых на самолетах гражданской авиации, ротор объединен с внутрен­ней рамой в единый конструктивный блок — гироузел. Гироузел со­стоит из гирокамеры и размещенного в гирокамере гиромотора. Гирокамера выполняет роль внутренней рамы гироскопа и имеет оси для подвеса в опорах наружной рамы. Гиромоторы в большинстве случаев представляют собой трехфазные асинхронные двигатели с короткозамкнутым внешним ротором и внутренним статором. Гиромотор ГМ-4П (рис. 3.9) состоит из ротора, статора, шарикоподшипниковых опор и оси. Статор имеет пакет железа 2, обмотку 1 и втулками 3 и 12 жестко укреплен на оси 5. Выходные провода обмотки статора выведены на­ружу через полую часть оси 5. Ротор гиромотора состоит из латунного обода 10, пакета железа 8 с короткозамкнутой обмоткой 16 и мас­сивного кольца 14. Пакет 8 ротора и кольцо 14 посажены в обод рото­ра на прессовой посадке. Фланцы 6 и 11 посажены в обод 10 с натягом и крепятся к нему винтами. Внутренние кольца шариковых подшипни­ков 4 и 13 установлены на цапфы фланцев 6 и 11 ротора с натягом. На­ружное кольцо подшипника 4 вставлено во втулку 3 с радиальным зазо­ром, а наружное кольцо подшипника 13 — во втулку 12 с натягом В гнезде статора под наружным кольцом свободно сидящего шарико­вого подшипника 4 поставлена пружинная шайба 7. Она служит для компенсации температурных изменений линейных размеров гиромотора Прокладки 9 и 15 служат для установления осевого натяга на ша­риковых подшипниках Концы оси гиромотора имеют резьбу. При по­мещении гиромотора в гирокамеру его ось пропускается через отвер­стия в корпусе и крышки гирокамеры После крепления крышки гирокамеры к ее корпусу ось гиромотора крепится к ним с помощью гаек. Гироузлы одинаковых типов могут применяться в различных гиро­скопических приборах, Иначе обстоит дело с наружными рамами. Кон­структивное исполнение наружных рам определяется в первую оче­редь типом гироприбора и является в каждом конкретном случае сугу­бо индивидуальным. В раме 1 на посадочные места по оси Охн закреп­ляются наружные кольца шариковых подшипников (рис. 3.10) Во внутренних кольцах шариковых подшипников закрепляются оси гирокамеры гироузла. По оси н в раме закреплены полуоси 2 и 3, предназначенные для подвеса рамы в корпусе гироприбора.

Рис. 3.9.Консрукция гиромотора ГМ-4П

Рис. 3.10. Конструкция наружной рамы гироприбора

3.4 Виды подвесов гироскопа

При конструировании гироприборов большое внимание уделяется выбору опор, обеспечивающих сво­боду вращения и осуществляющих двустороннюю удерживающую связь между ротором, рамами карданова подвеса и корпусом прибо­ра. Опоры гироскопа делятся на главные, обеспечивающие свободу вращения ротора, и опоры карданова подвеса, обеспечивающие сво­боду движения рам вокруг своих осей. Такая классификация обус­ловлена различными условиями работы опор Главные опоры в те­чение длительного времени рабо­тают при повышенных скоростях вращения, в то время как опоры карданова подвеса работают при малых скоростях и небольших углах поворота. Основными пока­зателями качества опор являются: момент сил трения Мтр, осевые я радиальные люфты, долговечность работы Тр. Момент сил трения в главных опорах не влияет на точность гироприбора, но влияет на выбор мощности гиромотора и срок его службы. Момент трения в опорах карданова подвеса в значительной степени оказывает влия­ние на точность гироприбора. В связи с этим разрабатываются спе­циальные меры для снижения трения в опорах карданова подвеса От­рицательное влияние на точность гироприборов оказывают также люф­ты в главных опорах карданова подвеса.

Наибольшее распространение в авиационных гироскопах получили шарикоподшипниковые опоры. Разработанные в настоящее время опо­ры такого типа позволяют получить достаточную точность и надежность приборов.

В тех случаях, когда необходимо повысить точность работы прибора, используют определенные конструктивные меры. В частности, момен­ты трения по внутренним осям карданова подвеса гироагрегатов кур­совых систем уменьшают с помощью специальных «вращающихся» подшипников (рис. 3.11). Гироузел 3 трехстепенного гироскопа подве­шен на оси 4 в наружной раме 7 с помощью комбинированных двой­ных подшипников. Средние кольца 2, 8 подшипников на левом и пра­вом концах оси подвеса гироузла приводятся во вращение в противо­положные стороны (привод вращения средних колец на рисунке не показан). Оси вращения 5, 9 наружной рамы закреплены в подшипниках 1, 6, наружные кольца которых неподвижны относительно основа­ния.

Пусть кинетический момент гироскопа совпадает с направлением полета. Тогда при повороте самолета относительно поперечной оси с угловой скоростью Ф наружная рама гироскопа будет разворачиваться вместе с основанием относительно неподвижной оси 4 подвеса гироузла с угловой скоростью — . Ось 4 остается неподвижной в силу основного свойства трехстепенного гироскопа — сохранять неизменным в прост­ранстве положение главной оси.

При равенстве моментов трения в опорах уход гироскопа отсутствует. Однако на практике равенства моментов обеспечить не удается и уход имеет место, но со значительно меньшей скоростью, чем при невращающихся опорах. Снижению систематиче­ского ухода способствует введение периодического реверсирования вращения средних колец.

Рис. 3.11. Схема конструкции «вращающихся» подшипников

В случае равных и небольших времен вращения средних колец под­шипников в разные стороны при реверсировании гироскоп будет откло­няться от среднего положения на равные и противоположные углы, со­вершая тем самым малые колебания относительно первоначального положения оси кинетического момента.

Рис. 3.12. Привод вращения средних колес «вращающихся» подшипников

Реверсирование вращения средних колец подшипников в гироагрегатах курсовых систем (рис. 3.12) производится переключателем В', управляемым специальным кулачком. Кроме «вращающихся» подшип­ников, могут быть использованы другие конструкции, позволяющие существенно снизить (или практически исключить) трение в подвесе гироскопа путем компенсации силы тяжести подвешиваемой части ги­роскопа некоторой другой противоположно направленной силой. К подвесам такого типа (рис. 3.13) относят: жидкостный (а), гидроста­тический (б), магнитный (в), электростатический (г) и др.

Из перечисленных типов подвесов в авиационных гироскопических приборах используется в настоящее время только жидкостный подвес (рис, 3.13, а). В гироскопе герметичный гироузел 1 подвешивается в герметичном корпусе 2, заполненном жидкостью. Плотность жидкости подбирается такой, чтобы масса вытесняемого гироузлом объема жид­кости была равна массе гироузла. Тем самым воспринимаемая опорами нагрузка снижается практически до нуля, что обеспечивает весьма ма­лые моменты сил трения в опорах подвеса гироузла.

Существуют также гироприборы на основе трехстепенного гироско­па с подвесом данного типа.

В гидростатическом подвесе жидкость или газ вводится под давле­нием через узкие отверстия 1 в зазор 2 между неподвижной частью опо­ры 4 и гироузлом 3 (рис. 3.13, б). При уменьшении зазора, вызванном нагрузкой, уменьшение расхода жидкости приводит к увеличению местного давления. Параметры подвеса выбираются таким образом, чтобы сумма сил местного давления уравновешивала силу веса гироузла при зазоре в пределах сотых долей миллиметра.

Магнитный подвес чувствительного элемента используется в крио­генных гироскопах. Техническая реализация такого гироскопа бази­руется на использовании явления сверхпроводимости некоторых мате­риалов, которое наступает при температурах, близких к абсолютному нулю. Это явление состоит в резком уменьшении электрического со­противления материала. При помещении шарика из сверхпроводящего материала в магнитное поле, напряженность которого не превышает не­которого критического значения, на его поверхности наводятся токи, препятствующие проникновению поля внутрь шарика. Вследствие этого шарик может висеть в магнитном поле, не имея механической точки опоры. Если вокруг шарика создан вакуум, то практически исключатся все силы сопротивления вращению шарика.

В экспериментальном криогенном гироскопе (рис. 3.13, в) корпус прибора представляет собой криогенную установку 7, заключенную в кожух 8 (сосуд Дьюара). Криогенная установка охлаждается жидким гелием или азотом и внутри сферической полости 4 в корпусе прибора поддерживается температура, близкая к абсолютному нулю. Ток, протекающий по обмоткам катушек 1, соз­дает центрирующее магнитное поле 2. На поверхности полой тонкостенной сфе­ры 3, сделанной из сверхпроводящего металла, например ниобия, образуются вихревые токи, создающие магнитное поле, препятствующее проникновению центрирующего магнитного поля в ме­талл. Силы взаимодействия центрирую­щего магнитного поля и поля, наводи­мого в металле сферы, удерживают ее во взвешенном состоянии внутри сфери­ческой полости корпуса прибора. Сфера 3 и тяжелый обод (5, помещенный внутри сферы, образуют ротор гироскопа, ко­торый приводится во вращение с боль­шой угловой скоростью Ω вокруг оси z, перпендикулярной плоскости обода, электродвигателем 5. В пространстве между сферическим ротором и полостью корпуса создается высокий вакуум. Электродвигатель 5 используется только для разгона ротора. После отключения двигателя ротор движется по инерции в течение нескольких дней и даже месяцев.

Рис. 3.13. Виды подвесов гироскопа

Гироскопы с электростатическим подвесом (рис. 3.13, г) конструк­тивно аналогичны криогенным гироскопам. Ротор 1 такого гироскопа изготовлен из бериллия в виде тонкого полого шара, помещенного в сферическую полость камеры 3, выполненной из специальной керами­ки, являющейся изолятором. На внутренней поверхности камеры рас­положены три пары чашеобразных электродов 2, питаемых перемен­ным электрическим током. Оси симметрии каждой пары таких электро­дов направлены по трем взаимно перпендикулярным направлениям, поэтому создаваемое ими электростатическое поле удерживает центр сферического ротора в центре О камеры. Ротор раскручивается с по­мощью вращающегося магнитного поля, создаваемого статором 4, несущим на себе электрическую обмотку. В полости камеры 3 поддер­живается высокий вакуум. Электрическое напряжение на обмотку статора подается лишь в период разгона ротора. В дальнейшем ротор длительное время вращается по инерции.

3.5 Устройства для передачи энергии

Устройства для передачи энергии служат для подвода элект­рической энергии от внешних источников к элементам гироприборов, расположенным на перемещающихся относительно друг друга узлах. С помощью данных устройств осуществляется электрическая связь между элементами, помещенными на корпусе прибора и наружной раме карданова подвеса или на наружной и внутренней рамах.

Наиболее просто энергия передается посредством гибких проволоч­ных проводников (рис. 3.14), Гибкий проводник 3 представляет собой пучок металлических жил, помещенных в изоляционную оплетку.

Рис. 3.14. Использование гибкого проводника для передачи энергии в гироскопе

Концы жил заделаны в общий наконечник, закрепленный на переход­ных контактах 4. Контакты обеспечивают соединение наконечника с жестким проводом 5, расположенным на соответствующей детали 1 подвеса. Контакты монтируют на колодке 2, изолирующей контакты от металлической поверхности детали.

В тех случаях, когда углы взаимного разворота деталей гироприбора достигают существенных значений, для передачи энергии применя­ют скользящие контакты (рис. 3.15, а). Щетка 3, по которой передает­ся электрический ток, скользит по токоприемному кольцу 2. Кольцо изолировано от оси рамы 1 сплошной изоляционной втулочкой с ре­бордами, предохраняющими щетку от схода с кольца. Если в местах со­членения деталей подвеса необходимо осуществить несколько изолиро­ванных друг от друга линий передачи электрического тока, то по оси подвеса устанавливается необходимое число токоприемных колец.

Широко применяемой разновидностью устройств передачи энергии являются точечные контакты. Они отличаются от скользящих контак­тов тем, что в данном случае точка контакта лежит на оси вращения элементов токоподвода. Каждый точечный контакт (рис. 3.15, б) состо­ит из неподвижного 3 и подвижного 4 контактов, образующих контакт­ную пару. В приведенном примере неподвижные контакты закрепле­ны на наружной раме 2, а подвижные—на оси вращения внутренней рамы 1. Контакты 3 и 4 изолированы от металлических деталей подвеса электроизоляционным материалом 5.

Рис 3.15 контактные устройства используемеые в гироприборах.

а-скальзящие, 2-набор точечных контактов.

3.6 Корректирующие устройства.

Одним из основных свойств трехсте­пенного гироскопа является способность сохранять неизменным поло­жение оси вращения ротора (главной оси гироскопа) в мировом про­странстве. Однако для решения ряда практических задач необходимо, чтобы главная ось гироскопа сохраняла неизменное направление не в мировом пространстве, а относительно той или иной выбранной систе­мы координат. Так, для определения с помощью трехстепенного гиро­скопа углов крена и тангажа ЛА необходимо, чтобы ось вращения ро­тора была направлена по вертикали места. При определении с помощью трехстепенного гироскопа отклонений ЛА от заданного направления необходимо, чтобы его главная ось выдерживала заданное направле­ние в горизонтальной плоскости. Для устранения нежелательных от­клонений главной оси гироскопа от требуемого направления или ком­пенсации различного рода возмущающих моментов, нарушающих нор­мальный режим работы гироскопического прибора, применяют коррек­тирующие устройства.

Корректирующие устройства гироскопических приборов обеспечи­вают сохранность требуемого положения главной оси гироскопа пу­тем приложения к гироскопу внешних управляющих (корректирую­щих) моментов или компенсацию уходов гироскопа в показаниях гироприбора. Основными элементами корректирующих устройств являют­ся чувствительные элементы и исполнительные органы. В качестве чувствительных элементов выбирают элементы, обладающие избира­тельностью к опорному направлению или устойчиво сохраняющие за­данное им направление, В авиационных приборах в основном исполь­зуют гравитационные, магнитные и ориентированные по небесным све­тилам чувствительные элементы.

Опорным направлением для гравитационных элементов является направление вертикали места, совпадающее с направлением ускоре­ния силы тяжести. Магнитные чувствительные элементы реагируют на магнитное поле Земли, поэтому опорным направлением для них яв­ляется направление магнитного меридиана. Чувствительные элементы, ориентированные по небесным светилам, обеспечивают задание устой­чивого направления на Солнце, Луну, планеты или звезды. Исполни­тельными органами корректирующих устройств авиационных прибо­ров являются, как правило, двухфазные' реверсивные асинхронные электродвигатели, работающие в заторможенном режиме, а также сельсинные и потенциометрические следящие системы.

Среди гравитационных чувствительных элементов наиболее широ­кое распространение получили жидкостные маятниковые датчики на­правления вертикали. Используются однокоординатные и двухкоординатные жидкостные маятниковые датчики (маятниковые переключа­тели).

Однокоординатный жидкостный маятниковый датчик (ЖМД) (рис. 3.16) представляет собой стеклянный баллон 1 с вваренными в него платиновыми электродами 3, 5, 6. Баллон заполнен токопроводящей жидкостью (электролитом) 2 так, что оставшийся воздушный пузырек 4 при горизонтальном положении датчика поровну и примерно на­половину перекрывает электроды 3, 5. Электрическая схема взаимо­действия ЖМД и исполнительного органа (двухфазного асинхронного двигателя) системы коррекции приведена на рис. 15.13. Электроды 3 и 6 в сосуде 5 соединены с обмотками управления двигателя 2, Общая точка обмоток управления 1подключена к одной из фаз источника ли­тания переменного тока. Центральный контакт 4 подключен к другой фазе.

Рис. 3.16. Однокоординатный жидкостный маятниковый датчик

Рис. 3.17. Электрическая схема однокоординатной системы коррекции

Схемы коррекции главной оси трехстепенного гироскопа в плоскости горизонта и по направлению вертикали места приведены на рис. 3.18. На рис.3.18, а приведена схема горизонтальной коррекции главной оси

Рис. 3.18. Коррекция главной оси трехстепенного гироскопа:

а – схема горизонтальной коррекции; б – схема коррекции по направлению вертикали места

трехстепенного гироскопа (1 — жидкостный маятниковый датчик, 2 — коррекционный двигатель). При го­ризонтальном положении главной оси гироскопа, а следовательно, и датчика электрическое сопротивление между средним электродом 6 (см. рис. 3.16) и каждым из крайних электродов 3, 5 одинаково, и по управляющим обмоткам коррекционного двигателя протекают токи, равные по величине, но противо­положные по направлению. В этом слу­чае двигатель неподвижен и момента не создает. При отклонении главной оси гироскопа от плоскости горизонта воз­душный пузырек смещается относитель­но электродов и изменяется площадь контактной поверхности электролита с электродами. Электрическое сопротивле­ние цепей между центральным и край­ними электродами изменяется. При этом большим становится сопротивление цепи того электрода, поверхность соприкос­новения которого с жидкостью меньше. В результате по управляющим обмоткам коррекционного двигателя потекут разные по значению и направле­нию токи. Двигатель создаст момент относительно оси подвеса на­ружной рамы, и гироскоп начнет прецессировать относительно оси подвеса гироузла. Схема горизонтальной коррекции (рис. 3.18, а) срабатывает таким образом, что коррекционный двигатель вызывает прецессию гироскопа в направлении, при котором угол рассогласования главной оси и плоскости горизонта уменьшается.

Рис. 3.19. Схема двухкоординатного жидкостного маятникового датчика

Однокоординатные ЖМД используются также для удержания глав­ной оси трехстепенного гироскопа по направлению вертикали места (рис. 3.18, б). Ось гироскопа будет совпадать с направлением вертика­ли места, если оси Охв и Оzв находятся в плоскости горизонта. Это обес­печивается соответствующим расположением ЖМД. Ось чувствитель­ности маятника 1 направляется параллельно оси Оzв, ось чувствитель­ности маятника 2 — параллельно оси в. Иногда маятник 1 распола­гают на наружной раме. В этом случае он также реагирует на откло­нение оси 0zв гироскопа от плоскости горизонта. Электрические схе­мы коррекции по каждой из осей Охв, 0zв аналогичны схеме, изобра­женной на рис. 3.17. Часто в качестве чувствительного элемента сис­темы, обеспечивающей коррекцию главной оси трехстепенного гиро­скопа по направлению вертикали места, используется двухкоординат-ный ЖМД (рис. 3.19). На металлическом корпусе 1 смонтированы изо­лированные от корпуса и между собой две пары электродов 2, 6 расположенных по окружности и на равном расстоянии друг от друга. Корпус 1 соединен с металлическим кожухом 5. Кожух почти полно­стью, за исключением пузырька воздуха 4, заполнен электролитом. Каждая пара электродов 2, 6 и центральный контакт 3 работают ана­логично од но координатном у датчику.

Магнитные чувствительные элементы используются для измерения отклонений главной оси гироскопа от плоскости магнитного меридиана. Наиболее простым чувствительным элементом подобного типа является магнитная стрелка. Однако вследствие малого восстанавливающего момента магнитной стрелки в современных авиационных приборах применяют в основном индукционные чувствительные элементы (рис. 3.20, а). Они состоят из двух одинаковых и параллельно распо­ложенных пермаллоевых стержней 1 с уложенными на них первичными обмотками 2, питаемыми переменным напряжением частоты ωп, и вторичной (сигнальной) обмоткой 3, охватывающей оба стержня. Первичные обмотки намотаны на стержнях в разные стороны. Созда­ваемые первичными обмотками переменные магнитные потоки одинако­вы по величине и противоположны по направлению* поэтому они не создают в сигнальной обмотке электродвижущую силу. Однако вслед­ствие переменности магнитных потоков, создаваемых в стержнях, их магнитная проницаемостьцс периодически меняется по закону

(3.3)

где μ0, μа — постоянная и переменная составляющие магнитной проницаемости.

Если индукционный чувствительный элемент размещен в плоско­сти горизонта, то горизонтальная составляющая напряженности маг­нитного поля Земли Н создает в стержнях индукцию Вс, а следова­тельно, и постоянные магнитные потоки

(3.4)

где S — площадь сечения стержней.

При этом направления потоков в обоих стержнях одинаковы, а их значения пропорциональны магнитной проницаемости материала стержней и косинусу углами между направлением магнитного мериди­ана и продольными осями стержней. Вследствие того что магнитная проницаемость стержней периодически меняется из-за переменности магнитных потоков, создаваемых переменным напряжением первичных обмоток, постоянные магнитные потоки от действия магнитного поля Земли в стержнях преобразуются в переменные. Эти потоки направле­ны в стержнях в одинаковом направлении и индуцируют в сигнальной обмотке электродвижущую силу, вследствие чего на выходе сигнальной обмотки появляется переменное напряжение

(3.5)

где ;ω — число витков в сигнальнойобмотке; k — коэффи­циент пропорциональности.

Амплитудное значение выходного напряжения UВЫХА в сигналь­ной обмотке зависит от расположения стержней по отношению к маг­нитному меридиану, характеризуемого углом ψМ.

Из выражения (3.5) следует, что индукционный чувствительный элемент не дает возможность определить знак разворота стержней по отношению к магнитному меридиану Icos (±ψМ) = cos ψМ и не решает задачу определения курса в пределах 0—360°, так как cos ψМ изменяется от 1 до О в пределах 0 ... 90°. В современных авиацион­ных приборах используются индукционные датчики, состоящие из трех индукционных чувствительных элементов, расположенных от­носительно друг друга под углом 60° (рис. 3.20, б). Сигнальные об­мотки соединены по схеме «треугольник».

Рис. 3.20. Схема индукционного датчика:

а – чувствительного элемента; б – датчика, состоящего из трех индукционных чувствительных элементов

Схема коррекции трехстепенного гироскопа в плоскости меридиана с помощью индукционного датчика приведена на рис. 3.21.

В начальный момент направление главной оси гироскопа 1 совпа­дает с направлением магнитного меридиана. Ось наружной рамы ги­роскопа через редуктор связана с осью, на которой расположен ин­дукционный датчик 5. Сигнал с него поступает на сельсин-приемник 4. С роторной обмотки сельсина-приемника сигнал поступает на усили­тель 3, а с него на двигатель 2. В том случае, если главная ось гироско­па отклонится от направления меридиана, ось чувствительности индук­ционного датчика поворачивается относительно направления горизон­тальной составляющей магнитного поля Земли, и с индукционного дат­чика сигнал поступает через сельсин и усилитель 3 на двигатель 2. Дви­гатель создает момент относительно оси подвеса гироузла, что приводит к прецессии гироскопа относительно оси наружной рамы в направле­нии уменьшения отклонения главной оси гироскопа и оси чувствительности индукционного датчика от направления магнитного меридиана до тех пор, пока это отклонение, а следовательно и сигнал с индукци­онного датчика не станет равным нулю.

Рис. 3.21. Схема коррекции трехстепенного гироскопа в плоскости магнитного меридиана

Рис. 3.22. Компенсационная схема коррекции показаний гироскопа направления

Недостатком данной схемы коррекции является то, что ось враще­ния наружной рамы гироскопа нагружается дополнительным возмуща­ющим моментом из-за трения в оси крепления индукционного датчика и его инерционности относительно этой оси. Такой дополнительный мо­мент существенно снижает точность прибора.

В настоящее время используется в основном компенсационная схе­ма коррекции показаний гироскопа направления (рис. 3.22). Ин­дукционный датчик ИД закреплен на корпусе самолета. При откло­нении продольной оси самолета от направления магнитного меридиана с датчика поступает сигнал в сельсинную следящую систему (сель­син-приемник СП, усилитель У1, двигатель M1). Следящая сис­тема разворачивает щетки потенциометра Ш на угол, пропорциональ­ный углу отклонения самолета от магнитного меридиана. Щетки по­тенциометра П2, закрепленные на корпусе самолета, также развер­нутся на угол поворота самолета относительно корпуса потенциометра, жестко закрепленного на оси наружной рамы ОНР гироскопа. Потенциометрическая следящая система, состоящая из потенциометров П1, П2, усилителя У2, двигателя М2 и редуктора Р, будет в данном случае согласована, а стрелка логометра Л развернется на угол, про­порциональный углу поворота самолета, т. е. магнитному курсу.

Если при прямолинейном полете самолета с произвольным курсом имеет место уход оси гироскопа, то корпус потенциометра П2 развер­нется относительно щеток и потенциометрическая следящая система рассогласуется. Появляется напряжение на выходе обмотки потенцио­метра П1 и двигатель М2 через редуктор Р развернет щетки потен­циометра П2 до согласования следящей системы. Показания логометра при этом не изменяются. Рассмотренная схема коррекции пока­заний курса позволяет осреднить и стабилизировать показания ин­дукционного датчика и в то же время на точность se работы не влия­ют уходы гироскопа в плоскости горизонта.

Аналогичным образом работают системы с (чувствительными эле­ментами, ориентированными по небесным светикам. В данном случае вместо индукционного датчика включается датчик, выдающий ин­формацию об отклонении оси чувствительности чувствительного эле­мента, реагирующего на интенсивность светового потока светила, от заданного направления.

3.7 Демпфирующие устройства.

Демпфирующие устройства предназначены для создания моментов, пропорциональных скорости поворота подвижной системы. Это необходимо в ряде гироприборов для демпфирования колебаний подвижной системы и обеспечения ее требуемых динамических харак­теристик. В качестве демпфирующих устройств в гироприборах при­меняются пневматические, гидравлические и магнитоэлектрические демпферы. Наиболее просты и удобны пневматические демпферы. Они, как правило, представляют собой цилиндр, внутри которого пе­ремещается поршень, шток которого через кинематическую передачу связан с осью подвижной части гироприбора. Цилиндр закрепляется на корпусе прибора. В донной части цилиндра имеется капиллярное отверстие для прохода воздуха, регулируемое с помощью винта. При перемещении поршень засасывает или вытесняет воздух из цилиндра * через капиллярное отверстие, что и обеспечивает демпфирование ко­лебаний подвижной системы.

Распространенной конструкцией гидравлического демпфера явля­ется следующая. Герметический цилиндр, в котором размещена по­движная система гироприбора, подвешивается на оси в герметичес­ком корпусе прибора. Пространство между корпусом прибора и ци­линдром заполняется специальной жидкостью. При вращении ци­линдра жидкость создает гидравлическое демпфирование, которое имеет ряд преимуществ перед пневматическим. В частности, из-за несжимаемости жидкости демпфирующий момент строго пропорцио­нален угловой скорости вращения цилиндра, что не характерно для пневматического демпфера. Кроме того, жидкость частично взвеши­вает цилиндр с подвижной системой и уменьшает давление на опоры, что приводит к уменьшению трения и повышению чувствительности прибора.

Магнитоэлектрические демпферы основаны на взаимодействии маг­нитного поля катушки, по которой протекает ток, с полем постоянно­го магнита. Катушка обычно располагается на корпусе прибора, а постоянный магнит связывается с подвижной системой гироприбора и поворачивается относительно катушки при поворотах подвижной сис­темы. Возникающее при этом взаимодействие магнитных полей ка­тушки и магнита создает момент относительно оси подвеса подвижной системы, пропорциональный скорости ее поворота.

3.8 Устройства для съема результатов измерений

Устройства для съема результатов измерений. Результаты изме­рений с гироприборов для использования их в процессе управления полетом снимаются визуально и по электрическим каналам. Для ви­зуального съема показаний применяют различные шкаловые и инди­каторные устройства. Эти устройства устанавливают непосредственно на гироскопе или связывают с гироскопом системой дистанционной передачи, В первом случае система механических передач обеспечи­вает индикацию перемещения наружной рамы карданова подвеса от­носительно корпуса прибора, что дает возможность визуально опре­делить угол крена или курса в зависимости от типа прибора.

Во втором случае углы поворота рам карданова подвеса переда­ются сельсинной следящей системой в автономный указатель 3 (рис. 3.23, а). Угол разворота внутренней рамы гироскопа относи­тельно наружной (или наружной рамы относительно корпуса прибора) приводит к развороту ротора сельсина-датчика 1 по отношению к его статору. При этом с обмотки сельсина-приемника 2 поступает напряжение на двигатель М через усилитель У. Ротор сельсина-при­емника 2 и вместе с ним стрелка отсчетного устройства 3 разворачи­ваются до тех пор, пока напряжение, поступающее на усилитель У, не станет равным нулю. Разворот стрелки отсчетного устройства будет пропорционален углу разворота рам гироскопа.

Рис 3.23 съём результатов измерений с помощью следящей системы:

а- сельсинной, б- потенциометрической.

Углы поворота рам карданова подвеса гироскопа в углы поворота стрелок отсчетных устройств могут преобразовываться также с по­мощью потенциометрических следящих систем (рис. 3.23, б). Кор­пус потенциометра 1 следящей системы связан с осью наружной рамы, а его щетки закреплены на корпусе прибора. При развороте корпуса прибора вместе с самолетом относительно неподвижной наружной рамы происходит рассогласование следящей системы, С потенцио­метра 2 сигнал поступает на двигатель М через усилитель У. Ротор двигателя разворачивает щетки потенциометра 2 и вместе с ними стрелку отсчетного устройства 3 до тех пор, пока напряжение, посту­пающее на усилитель У, не станет равным нулю. Разворот стрелки отсчетного устройства 3 будет пропорционален углу разворота само­лета относительно наружной рамы.

Результаты измерений с гироприборов для передачи их в управ­ляющую систему снимаются с помощью потенциометрических дат­чиков, сельсинов, синусно-косинусных трансформаторов и индук­ционных датчиков. Широкое применение потенциометрических датчи­ков объясняется их простотой и возможностью применения в схемах постоянного и переменного тока. Значительная мощность снимаемого сигнала позволяет в ряде случаев не применять усилители. Недостат­ками потенциометрических датчиков являются значительный момент трения, ступенчатость снимаемого напряжения, наличие трущихся кон­тактов и, как следствие, малая надежность. Датчиками, лишенными пе­речисленных недостатков, являются индукционные датчики, сельсины и синусно-косинусные трансформаторы. Однако они более сложны по конструктивному исполнению и имеют нелинейную характеристику при больших углах разворота.

3.9 Арретирующие устройства.

Арретирующие устройства предназначаются для фиксиро­вания главной оси гироскопа в заданном положении относительно кор­пуса прибора в период подготовки прибора к работе. Чаще всего арретирующие устройства устанавливают в авиагоризонтах. Они из­готовляются с ручным и дистанционным управлением (рис. 3.24).

При ручном арретировании гироскопа с вращающимся ротором (рис. 3.24, а) толкатель 12 перемещается вручную в направлении, указанном

Рис. 3.24. Виды арретирующих устройств:

а – с ручным управлением; б – с дистанционным управлением

стрелкой, по направляющим 10 и 11, сжимая пружину 9. Вы­ступ 7 толкателя 12 упирается в кулачок 5. Тангенциальная состав­ляющая силы давления на кулачок создает момент относительно оси вращения наружной рамы 1. Под действием этого момента гироскоп прецессирует относительно оси подвеса гироузла.

При совпадении направления главной оси гироскопа с направле­нием оси подвеса наружной рамы гироскоп теряет одну степень сво­боды и начинает вращаться относительно оси наружной рамы до тех пор, пока выступ 7 не западет в паз кулачка 5. В это же время клин 8 толкателя 12 воздействует на толкатель 6, который в свою очередь да­вит на кулачок 3, создавая момент относительно оси подвеса гироуз­ла 2. При перемещении толкателя 6 пружина 4 сжимается. Давление толкателя 6 на кулачок 3 вызывает движение гироскопа относительно оси гироузла до тех пор, пока толкатель 6 не попадет в паз кулачка 3. Авиагоризонт оказывается заарретированным по обеим осям.

При разарретироваиии толкатель 12 под действием пружины 9 перемещается в противоположном направлении. Одновременно и тол­катель 6 под действием пружины 4 возвращается в первоначальное положение. Гироскоп приобретает свободу поворота относительно осей подвеса наружной рамы и гироузла.

Схема арретирующего устройства дистанционного управления приведена на рис, 3.24, б. Процесс арретирования происходит сле­дующим образом. При подаче напряжения на двигатель 1 его ротор начинает вращаться, что вызывает поступательное движение штока 12 благодаря перемещению пальца 2 по винтовой прорези на штоке. Ро­лик 11, закрепленный на конце штока 12, давит на торцовый кулачок 3 дополнительной рамы 7. Рама 7 поворачивается и устанавливается в положение, при котором ось наружной рамы 6 ОzН параллельна поперечной оси самолета. В этом положении ролик 11 соскальзывает с кулачка 3 и начинает давить на толкатель 9. Упор толкателя 9 да­вит на профильный кулачок 5, закрепленный на оси наружной рамы. Под действием создаваемого при этом момента гироскоп прецессирует относительно оси Охв подвеса гироузла 5 и доходит до упора. Прецессия прекращается и гироскоп поворачивается вокруг оси наружной рамы до тех пор, пока выступ толкателя 9 не войдет в вырез кулачка 8. Одновременно с этим толкатель 10 перемещается по наклонной по­верхности толкателя 9 и входит во взаимодействие с кулачком 4. Под действием давления толкателя 10 на кулачок 4 гироузел 5 разво­рачивается относительно оси его подвеса, толкатель 10 входит в паз кулачка 4, и гироузел устанавливается таким образом, что главная ось гироскопа становится перпендикулярной осям ОхВ и ОzН. Весь цикл арретирования совершается за один оборот шестерни редукто­ра. После этого палец 2 попадает в продольную канавку штока 12 и под действием пружин возвращается в исходное положение, давая возможность толкателям 9 и 10 освободить кулачки 8 и 4. Таким об­разом, арретирующее устройство, установив гироскоп в требуемое положение, сразу же освобождает его.

Соседние файлы в папке Теория (часть 2)