
- •Содержание
- •5. Лабораторная работа № 4. Проверка предпосылки отсутствия корреляции возмущений. Оценка параметров модели с автокоррелированными остатками …………………………………………………………...79
- •9. Лабораторная работа № 8. Статистический анализ рядов ди-
- •Введение
- •Лабораторная работа № п.1. Функции программы ms Excel выполнения операций с матрицами и категории «Статистические» применяемые при решении задач курса «Эконометрия»
- •1.2. Выполнение операций с матрицами с помощью функций ms Excel.
- •Функции программы ms Excel для работы с матрицами
- •1.3. Обработка наблюдений статистических признаков
- •Наблюдения статистических признаков и .
- •Функции программы ms Excel для расчета числовых характеристик статистических признаков
- •Реализация в ms Excel формул задания 2
- •1.4. Нахождение значений статистических критериев.
- •Функции программы ms Excel для нахождения значений статистических критериев
- •1.5. Вопросы для самоподготовки к лабораторной работе № п.1
- •2. Лабораторная работа № 1. Выявление взаимосвязи между статистическими признаками
- •Реализация в ms Excel формул заданий 1-3
- •2.7. Вопросы для самоподготовки к лабораторной работе № 1
- •3. Лабораторная работа № 2. Классическая линейная регрессионная модель. Метод наименьших квадратов (1-мнк) оценки параметров модели
- •Выборочные данные наблюдений статистических признаков: объем реализации и площадь магазина .
- •Реализация в ms Excel формул на рис. 3.1
- •Реализация в ms Excel формул на рис. 3.1
- •Реализация в ms Excel формул на рис. 3.3
- •Показатели отчета на рис. 3.4
- •Реализация в ms Excel формул на рис. 3.3
- •3.7. Вопросы для самоподготовки к лабораторной работе № 2
- •4. Лабораторная работа № 3. Модель множественной регрессии. Проверка предпосылок 1-мнк. Оценка параметров обобщенной линейной эконометрической модели
- •4.1. Модель множественной регрессии (задание 3.1)
- •Примеры многофакторных эконометрических моделей
- •Реализация в ms Excel формул задания №1
- •4.3. Проверка предпосылки гомоскедастичности возмущений. Обобщенный метод наименьших квадратов оценки параметров модели с гетероскедастичными остатками (задание 3.3).
- •Реализация в ms Excel формул при проверке гетероскедастичности модели возмущений по критерию Гольфельда-Квандта (рис. 4.13)
- •Сравнение эконометрических моделей производительности труда
- •4.4. Экономический анализ и прогноз по многофакторной модели линейной регрессии. (задание 3.4).
- •Реализация в ms Excel лабораторной работы № 3 (задание 3.4)
- •Реализация в ms Excel формул задании №3 (лаб. Раб. №3)
- •4.5. Вопросы для самоподготовки к лабораторной работе № 3
- •5. Лабораторная работа № 4. Проверка предпосылки отсутствия корреляции возмущений. Оценка параметров модели с автокоррелированными остатками
- •Реализация в ms Excel формул на рис. 5.2.
- •Сравнение эконометрических моделей товарооборота продовольственных товаров
- •5.5. Вопросы для самоподготовки к лабораторной работе № 4
- •6. Лабораторная работа № 5. Фиктивные (индикативные) переменные в эконометрических моделях
- •Значения переменных 2-ой модели
- •6.4. Вопросы для самоподготовки к лабораторной работе № 5
- •7. Лабораторная работа № 6. Экономический анализ деятельности предприятия с помощью производственной функции
- •Вопросы для самоподготовки к лабораторной работе № 6
- •8. Лабораторная работа № 7. Системы эконометрических уравнений
- •8.3. Организация данных и расчетов на листе ms Excel.
- •8.4. Результаты оценивания параметров уравнений двухшаговым мнк
- •8.5. Вопросы для самоподготовки к лабораторной работе № 7
- •9. Лабораторная работа № 8. Статистический анализ рядов динамики.
- •9.1. Теоретические замечания.
- •Потребление электроэнергии
- •Исходные данные и скользящие средние
- •Исходные данные и экспоненциально слаженные уровни
- •9.3. Выявление тренда во временном ряде и построение кривых роста.
- •9.4. Выявление сезонных колебаний во временном ряде. Построение аддитивной и мультипликативной моделей временного ряда с сезонными колебаниями.
- •Значения коэффициента автокорреляции
- •Расчёты аддитивной модели
- •Определение сезонной составляющей в аддитивной модели
- •Определение прогноза по аддитивной модели
- •Расчёты мультипликативной модели
- •Определение сезонной составляющей в мультипликативной модели
- •9.5. Адаптивные модели временных рядов.
- •Количество проданных джинсов: апрель 2009 - март 2012 г
- •Расчёты задания 4 по способу Брауна
- •9.6. Вопросы для самоподготовки к лабораторной работе № 8
- •Раздел 10. Задания лабораторных работ
- •10.1. Требования к выполнению и оформлению лабораторных работ по курсу «Эконометрия»
- •Сроки и порядок допуска, выполнения и защиты лабораторных работ
- •10.2. Задания лабораторной работы № п.1 Функции программы ms Excel выполнения операций с матрицами и категории «Статистические» применяемые при решении задач курса «Эконометрия»
- •Выполнение операций с матрицами с помощью функций ms Excel.
- •Наблюдения статистических признаков и
- •Преобразования данных наблюдений статистических признаков и
- •10.3. Задания лабораторной работы № 1
- •Отбор показателей в лабораторной работе № 1
- •10.4. Задания лабораторной работы № 2
- •Данные для выполнения лабораторной работы № 2
- •Данные наблюдений показателей и
- •Данные наблюдений показателей и
- •Данные наблюдений показателей и
- •Данные наблюдений показателей и
- •Данные наблюдений показателей и
- •Данные наблюдений показателей и
- •Данные наблюдений показателей и
- •Данные наблюдений показателей и
- •Данные наблюдений показателей и
- •Данные наблюдений показателей и
- •Данные наблюдений показателей и
- •Данные наблюдений показателей и
- •Данные наблюдений показателей и
- •Данные наблюдений показателей и
- •Данные наблюдений показателей и
- •Данные наблюдений показателей и
- •Данные наблюдений показателей и
- •Данные наблюдений показателей и
- •Данные наблюдений показателей и
- •Данные наблюдений показателей и
- •10.5. Задания лабораторной работы № 3.
- •Данные для построения многофакторной регрессии
- •Данные для построения многофакторной регрессии
- •Данные для построения многофакторной регрессии
- •10.6. Задания лабораторной работы № 4
- •10.7. Задания лабораторной работы № 5 Фиктивные (индикативные) переменные в эконометрических моделях
- •Возраст компьютерной техники ( , месяцы)
- •Данные для задачи 2 (для нечетного номера варианта) лабораторной работы №6.
- •Данные для задачи 3 (для четного номера варианта) лабораторной работы №6.
- •10.8. Задания лабораторной работы № 6
- •Затраты труда,
- •Затраты производственных фондов,
- •Выпуск продукции,
- •10.9. Задания лабораторной работы № 7 Системы эконометрических уравнений.
- •Модели для выполнения лабораторной работы №8(*)
- •Исходные данные к лабораторной работе № 8
- •Исходные данные к лабораторной работе № 8
- •Исходные данные к лабораторной работе № 8 (вариант 6)
- •Исходные данные к лабораторной работе № 8 (вариант 11)
- •10.10. Задания лабораторной работы № 8 Статистический анализ рядов динамики
- •Экономический смысл показателей заданий 1,2,3
- •Экономический смысл показателей задания 4
- •Данные заданий 1,2,3 (варианты 1-12)
- •Данные заданий 1,2,3 (варианты 13-24)
- •Данные заданий 1,2,3 (варианты 25-35)
- •Данные задания 4 (варианты 1 - 12)
- •Данные задания 4 (варианты 13 - 24)
- •Данные задания 4 (варианты 25 - 35)
- •10. Задания контрольной работы студентов заочного отделения
- •Задания контрольной работы
- •Выбор варианта контрольной работы
- •Список рекомендованной литературы Основная
- •Дополнительная
- •Приложение а задания и требования к выполнению самостоятельных работ и творческих заданий творческих заданий по курсу «эконометрия»
- •Приложение б Статистические таблицы
- •Значения - критерия Фишера при уровне значимости
- •Значения - критерия Стьюдента при уровне значимости 0,10; 0,05; 0,01 (двусторонний)
- •Значения - критерия Пирсона при уровне значимости 0,10; 0,05; 0,01
- •Значения статистик Дарбина-Уотсона при 5%-ом уровне значимости
- •Значения функции Гаусса
- •Значения интегральной функции Лапласа
- •Продолжение табл. Б.6
Исходные данные и экспоненциально слаженные уровни
Дата |
t |
|
Прогноз, |
Остатки, |
01.01.09 |
1 |
153 |
#Н/Д |
#Н/Д |
01.02.09 |
2 |
136 |
153 |
#Н/Д |
01.03.09 |
3 |
153 |
147,9 |
#Н/Д |
01.04.09 |
4 |
158 |
149,43 |
#Н/Д |
01.05.09 |
5 |
151 |
152,001 |
11,37915 |
01.06.09 |
6 |
178 |
151,7007 |
5,786677 |
01.07.09 |
7 |
174 |
159,5905 |
15,9802 |
01.08.09 |
8 |
178 |
163,9133 |
17,32329 |
01.09.09 |
9 |
211 |
168,1393 |
19,1287 |
01.10.09 |
10 |
233 |
180,9975 |
27,34413 |
01.11.09 |
11 |
234 |
196,5983 |
39,74807 |
01.12.09 |
12 |
202 |
207,8188 |
44,49787 |
01.01.10 |
13 |
174 |
206,0732 |
37,1349 |
01.02.10 |
14 |
153 |
196,4512 |
28,64399 |
01.03.10 |
15 |
168 |
183,4158 |
31,36109 |
01.04.10 |
16 |
170 |
178,7911 |
32,42603 |
01.05.10 |
17 |
159 |
176,1538 |
27,09821 |
01.06.10 |
18 |
181 |
171,0076 |
14,24995 |
01.07.10 |
19 |
174 |
174,0053 |
12,53505 |
01.08.10 |
20 |
182 |
174,0037 |
11,46152 |
01.09.10 |
21 |
218 |
176,4026 |
7,3889 |
01.10.10 |
22 |
246 |
188,8818 |
24,45596 |
01.11.10 |
23 |
253 |
206,0173 |
41,05593 |
01.12.10 |
24 |
202 |
220,1121 |
48,99048 |
01.01.11 |
25 |
180 |
214,6785 |
43,96176 |
01.02.11 |
26 |
155 |
204,2749 |
35,29882 |
01.03.11 |
27 |
169 |
189,4924 |
36,32567 |
01.04.11 |
28 |
180 |
183,3447 |
36,74486 |
01.05.11 |
29 |
171 |
182,3413 |
30,87149 |
01.06.11 |
30 |
203 |
178,9389 |
13,65958 |
01.07.11 |
31 |
198 |
186,1572 |
15,47846 |
01.08.11 |
32 |
210 |
189,7101 |
16,81083 |
01.09.11 |
33 |
236 |
195,797 |
19,41536 |
01.10.11 |
34 |
274 |
207,8579 |
26,88376 |
01.11.11 |
35 |
280 |
227,7006 |
46,19788 |
01.12.11 |
36 |
232 |
243,3904 |
53,93293 |
Здесь
,
(9.11)
.
(9.12)
Остатки вычисляются по формуле
.
(9.13)
Рис. 9.6. Экспоненциальное сглаживание с Анализа данных
4. Для получения прогноза продолжаем
столбец прогнозных значений ещё на одну
клетку и получаем
.
5. Ряд, тренд, прогнозные значения и прогноз на будущий месяц можно изобразить графически с помощью Excel, Диаграмма (рис. 9.7).
.
Рис. 9.7. Скользящие средние с Диаграммы
Можно, с помощью остатков, оценивать качество прогноза и находить доверительные интервалы прогноза, но при этом будем иметь очень большую погрешность, что видно и из рис 9.7.