Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
В.Ю.ШИШМАРЁВ АВТОМАТИКА.doc
Скачиваний:
570
Добавлен:
14.11.2019
Размер:
5.35 Mб
Скачать

Импульсные методы модуляции

В импульсных методах модуляции несущим колебанием является периодическая последовательность прямоугольных импульсов. Модулятор в соответствии с изменением низкочастотного сигнала изменяет какой-либо параметр этой последовательности (см. рис. 14.8) импульсов: амплитуду (амплитудно-импульсная модуляция — АИМ), частоту (частотно-импульсная модуляция — ЧИМ), длительность (широтно-импульсная модуляция — ШИМ), момент появления (фазоимпульсная модуляция — ФИМ) и др.

Принципиальное отличие импульсных методов модуляции от непрерывных заключается в том, что с их помощью можно передавать значения сигнала лишь в отдельные моменты времени — моменты передачи очередных импульсов. Следовательно, непрерывные сигналы (например, телеметрические) при импульсной модуляции необходимо подвергать квантованию по времени. Структурная схема системы с импульсной модуляцией аналогична схеме, показанной на рис. 14.7, г. Для демодуляции сигнала необходимо измерять тот параметр импульсов, который несет информацию (амплитуду, длительность, частоту и т.д.).

Цифровые методы модуляции

Рассмотренные ранее методы модуляции позволяют в принципе абсолютно точно передать значение сигнала (непрерывные — в любой момент времени, импульсные — в отдельные моменты времени). Однако точность передачи при практическом использовании этих методов ограничена воздействием помех и неидеальностью характеристик модулятора, линии связи, демодулятора и других устройств, участвующих в передаче сигнала.

Несравнимо более высокую точность передачи сигнала обеспечивают дискретные, или цифровые, методы модуляции, так как в этом случае сигнал подвергается квантованию как по времени, так и по уровню.

При этом, увеличивая число уровней квантования (и соответственно разрядность кода), можно сделать ошибку квантования по уровню сколь угодно малой. Естественно, что за это приходится расплачиваться увеличением времени передачи сигнала или расширением требуемой полосы пропускания линии связи (если увеличивать частоту следования импульсов). Представление дискретного по времени и уровню сигнала в виде цифрового кода осуществляется по определенным правилам в соответствии с принятым методом кодирования. Устройства, осуществляющие кодирование сигнала и его обратное преобразование — декодирование, называют соответственно кодером и декодером.

Так как при цифровых методах модуляции информацию несет не какой-либо параметр импульсов, а вид кодовой комбинации, то при приеме нет необходимости измерять искаженные в линии связи амплитуду, длительность или частоту импульсов с неизбежной при этом ошибкой измерения. Следует только решить, есть импульс в определенный момент времени или его нет. Этим обстоятельством и объясняются столь высокие точность и помехоустойчивость цифровых методов модуляции. Так, если точность не-

прерывных и импульсных систем ТИ составляет 0,5... 1,0%, то цифровые системы позволяют достигнуть точности 0,05...0,1 % и выше.

Цифровые методы модуляции обеспечивают передачу информации без накопления ошибок за счет преобразования сигнала в пунктах ретрансляции (см. рис. 14.6), что позволяет создавать системы с практически неограниченной дальностью действия. Кроме того, цифровые сигналы не требуют дополнительных преобразований при вводе-выводе из ЦВМ, широко применяемых в телемеханике.

Все это обусловило исключительное использование цифровых методов для передачи телемеханической информации.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]