
- •В.Ю. Шишмарёв автоматика
- •Введение
- •Глава 1 основные понятия, цели и принципы управления
- •1.1. Основные понятия и определения
- •1.2. Примеры систем автоматического управления
- •1.3. Цели и принципы управления
- •4. Типовая функциональная схема сау
- •1.5. Математические модели сау
- •1.6. Классификация сау
- •Контрольные вопросы
- •Глава 2
- •2.2. Классификация элементов автоматики
- •2.3. Общие характеристики элементов автоматики
- •2.4. Динамический режим работы элементов
- •Контрольные вопросы
- •Глава 3
- •3.2. Классификация измерительных преобразователей
- •3.3. Статические и динамические характеристики измерительных преобразователей
- •4. Структурные схемы измерительных преобразователей
- •3.5. Унификация и стандартизация измерительных преобразователей
- •Контрольные вопросы
- •Глава 4 измерительные элементы систем автоматики (датчики)
- •4.1. Общие сведения
- •4.2. Датчики перемещений Потенциометрические датчики
- •Индуктивные датчики
- •Индукционные датчики
- •Емкостные датчики
- •Фотоэлектрические датчики
- •Электроконтактные датчики
- •Путевой выключатель
- •4.3. Датчики скорости Центробежные датчики скорости
- •Тахогенераторы
- •4.4. Датчики температуры Биметаллические датчики температуры
- •Термопары
- •Проволочные термосопротивления
- •Полупроводниковые термосопротивления (термисторы)
- •4.5. Датчики давления
- •Контрольные вопросы
- •Глава 5 задающие устройства и устройства сравнения
- •5.1. Задающие устройства
- •5.2. Устройства сравнения
- •Глава 6 усилители
- •6.1. Общие сведения
- •6.2. Магнитные усилители
- •6.3. Электромашинные усилители
- •6.4. Полупроводниковые усилители Усилители на биполярном транзисторе
- •Усилители напряжения на полевом транзисторе
- •Операционные усилители
- •Универсальные оу
- •Прецизионные операционные усилители
- •Мощные операционные усилители
- •Операционные усилители в моделировании математических операций
- •Электрометрические и измерительные усилители
- •Многокаскадные усилители
- •Усилители мощности
- •Контрольные вопросы
- •Глава 7 переключающие устройства (реле)
- •7.1. Общие сведения и классификация реле
- •7.2. Нейтральные электромагнитные реле постоянного тока
- •7.3. Тяговые и механические характеристики электромагнитного реле
- •7.4. Электромагнитные реле переменного тока
- •7.5. Поляризованные электромагнитные реле
- •7.6. Контакты реле. Средства дуго- и искрогашения
- •7.7. Реле времени
- •7.8. Тепловые реле
- •Глава 8 исполнительные устройства
- •8.1. Общие характеристики исполнительных устройств
- •8.2. Электрические серводвигатели
- •Электродвигатели постоянного тока с независимым возбуждением
- •Электродвигатели постоянного тока с последовательным возбуждением
- •Серводвигатели переменного тока
- •8.3. Гидравлические двигатели
- •8.4. Сервоприводы с электромагнитными муфтами
- •8.5. Шаговые сервоприводы
- •Контрольные вопросы
- •Глава 9 типовые звенья сау
- •9.1. Режимы работы объекта. Возмущающие воздействия
- •9.2. Апериодическое (инерционное, статическое) звено
- •9.3. Астатическое (интегрирующее) звено
- •9.4. Колебательное (апериодическое 2-го порядка) звено
- •9.5. Пропорциональное (усилительное, безынерционное) звено
- •9.6. Дифференцирующее звено
- •9.7. Запаздывающее звено
- •9.8. Логарифмические частотные характеристики динамических звеньев
- •Контрольные вопросы
- •Глава 10 соединение звеньев в сау
- •10.1. Типовые соединения звеньев
- •Последовательное соединение звеньев
- •Параллельно-согласованное соединение звеньев
- •10.2. Сложные соединения звеньев
- •10.3. Аппроксимация сложных объектов совокупностью нескольких типовых звеньев
- •Контрольные вопросы
- •Глава 11 синтез сау или выбор типа регулятора
- •11.1. Структурные схемы сау
- •11.2. Понятие обратной связи
- •11.3. Классификация регуляторов по реализуемому закону регулирования
- •Контрольные вопросы
- •Глава 12 анализ устойчивости и качества работы сау
- •12.1. Понятие устойчивости сау
- •12.2 Показатели качества работы сау
- •12.3. Оптимальные процессы регулирования
- •12.4. Анализ устойчивости замкнутой системы
- •12.5. Вывод характеристического уравнения замкнутой системы из передаточных функций объекта и регулятора
- •12.6. Критерии устойчивости сау Алгебраический критерий устойчивости Рауса-Гурвица
- •Частотный критерий устойчивости Михайлова
- •Частотный критерий устойчивости Найквиста
- •12.7. Анализ качества работы замкнутой сау
- •Глава 13 цифровые системы автоматического управления
- •13.1. Включение эвм в сау
- •13.2. Логические устройства автоматики
- •Релейно-контактные схемы
- •Изображение основных логических элементов на схемах
- •Минимизация логических функций
- •Бесконтактные логические элементы
- •Синтез логических устройств
- •13.3. Системы числового программного управления
- •13.4. Промышленные роботы
- •13.5. Управляющие микроЭвм и микроконтроллеры Структура цифровых систем управления
- •МикроЭвм и микроконтроллеры в системах управления технологическими процессами
- •Контрольные вопросы
- •Глава 14 системы телемеханики
- •14.1. Основные понятия
- •14.2. Принципы построения систем телемеханики
- •14.3. Линии связи
- •14.4. Методы преобразования сигналов
- •Непрерывные методы модуляции
- •Импульсные методы модуляции
- •Цифровые методы модуляции
- •14.5. Асу технологическими процессами и производством
- •Контрольные вопросы
- •Экспериментальное определение динамических характеристик объектов регулирования
- •Выбор регуляторов
- •Выбор регуляторов на основании расчета
- •Выбор оптимальных значений параметров регуляторов
Релейно-контактные схемы
Основными элементами релейно-контактных схем являются электромагнитные реле с замыкающими контактами. В качестве логических переменных в схемах используют изменения состоя ний контактов релейных элементов. При этом логические переменные обозначают строчными буквами (например, у1 у2 ..., уn, x1, х2 ..., хn), а устройства — прописными, причем устройства, формирующие выходные сигналы, обозначают У1 У2 ..., Уп, а устройства, предназначенные для передачи входных и промежуточных сигналов, — Х1 Х2 ..., Хп. Постоянно замкнутым контактам в электрической цепи соответствует цифра 1, а постоянно разомкнутым — 0.
Операция И реализуется группой последовательно соединенных контактов управляющих реле Х1 Х2 ..., Хп в цепи обмотки реле У, а операция ИЛИ — группой параллельно соединенных контактов.
Допустим, что необходимо получить сигнал на выходе логического устройства только в случае, если на его вход будут одновременно поданы два входных сигнала. Эта описанная словесно ситуация соответствует логической операции И с двумя переменными. Для ее технической реализации на релейно-контактных элементах необходимо обеспечить срабатывание электромагнитного реле У, для чего сигналы (напряжения) подаются на обмотки двух реле Х1 Х2 соответствующие контакты х1 х2 которых включены последовательно с обмоткой реле У. При замыкании обоих контактов напряжение подается на обмотку реле У. Выходной сигнал у появляется при замыкании контакта у.
Релейный эквивалент логический операции И см. в табл. 13.4.
Изображение основных логических элементов на схемах
Первые устройства, для описания действий которых использовались логические функции, выполнялись на релейно-контактных элементах. Затем появились бесконтактные устройства, предназначенные только для логических преобразований сигналов и представляющие собой конструктивно оформленные изделия.
Устройства автоматики, действия которых описываются элементарными логическими функциями, называют обычно в соответствии с реализуемыми ими логическими операциями элементами НЕ, И, ИЛИ, И —НЕ, ИЛИ —НЕ. Их обозначения на схемах показаны в табл. 13.4.
Минимизация логических функций
Имея необходимые элементы, по логической функции можно синтезировать логическое устройство любой сложности. Однако схема такого устройства может оказаться неоправданно сложной, требующей использования большого числа логических элементов, что соответственно будет влиять на его стоимость и надежность. Во многих случаях можно упростить логическую функцию так,
чтобы соответствующая ей схема устройства также существенно упростилась, выполняя при этом поставленную задачу.
Минимизация основана на применении законов алгебры логики, которые приведены в табл. 13.5 для минимального числа переменных. Эквивалентность левой и правой частей уравнений обозначается в них знаком равенства. Рядом изображены их релейные эквиваленты.
Инверсия произвольной
комбинации двоичных переменных,
соединенных знаками «плюс» или
«умножение», эквивалентна замене в этой
комбинации значений переменных их
инверсиями при одновременном изменении
знака «плюс» на знак «умножение», и
наоборот. Например,
Таким образом, закон инверсии позволяет заменить операцию ИЛИ операцией И, а при необходимости и наоборот. Это очень важно, поскольку при широком применении интегральных логических элементов в построении логических устройств наиболее часто используют элементы И—НЕ, ИЛИ—НЕ.
Преобразование логических функций с применением распределительного закона является основным методом упрощений, так как вынесение общего множителя за скобки сокращает общее число переменных в выражении, а следовательно, позволяет сократить число элементов в схемах логических устройств.
Преобразование функций в целях упрощения называют минимизацией логических функций.
Выполняя минимизацию, используют также следствия законов алгебры логики, основными из которых являются:
Процесс упрощения логических функций в целях их минимизации при прямом использовании законов и следствий алгебры логики может быть пояснен следующим примером.
Пример. Требуется минимизировать логическую функцию
Наборы логических элементов, позволяющие реализовать логические функции любой сложности, называют базисами.
Имея только логические элементы НЕ, И, ИЛИ, можно реализовать логические алгоритмы любой сложности. Именно в этом базисе ранее изготовляли полупроводниковые логические устройства.
Базис для построения логических устройств может состоять из одного вида логических элементов, если в качестве базового выбрать, например, элемент И—НЕ или элемент ИЛИ—НЕ.
С появлением интегральных технологий производства электронных компонентов стали изготовлять логические устройства в базисе одного из этих типов элементов. Для реализации алгоритма одинаковой сложности в базисах И—НЕ, ИЛИ—НЕ формально требуется большее число элементов, чем в базисах НЕ, И, ИЛИ. Но для интегральных электронных схем, где десятки тысяч элементов можно разместить на одном кристалле, это несущественно. Например, чтобы реализовать в базисе И—НЕ логическую операцию ИЛИ, требуется три элемента.
По типам интегральных схем различают элементы резистивно-транзисторной логики (РТЛ), диодно-транзисторной логики (ДТЛ), транзисторно-транзисторной логики (ТТЛ), эмиттерно-связанной логики (ЭСЛ), логики с инжекционным питанием (И2Л), на МОП-транзисторах, в том числе с дополняющими типами проводимости (КМОП) и др.