
- •В.Ю. Шишмарёв автоматика
- •Введение
- •Глава 1 основные понятия, цели и принципы управления
- •1.1. Основные понятия и определения
- •1.2. Примеры систем автоматического управления
- •1.3. Цели и принципы управления
- •4. Типовая функциональная схема сау
- •1.5. Математические модели сау
- •1.6. Классификация сау
- •Контрольные вопросы
- •Глава 2
- •2.2. Классификация элементов автоматики
- •2.3. Общие характеристики элементов автоматики
- •2.4. Динамический режим работы элементов
- •Контрольные вопросы
- •Глава 3
- •3.2. Классификация измерительных преобразователей
- •3.3. Статические и динамические характеристики измерительных преобразователей
- •4. Структурные схемы измерительных преобразователей
- •3.5. Унификация и стандартизация измерительных преобразователей
- •Контрольные вопросы
- •Глава 4 измерительные элементы систем автоматики (датчики)
- •4.1. Общие сведения
- •4.2. Датчики перемещений Потенциометрические датчики
- •Индуктивные датчики
- •Индукционные датчики
- •Емкостные датчики
- •Фотоэлектрические датчики
- •Электроконтактные датчики
- •Путевой выключатель
- •4.3. Датчики скорости Центробежные датчики скорости
- •Тахогенераторы
- •4.4. Датчики температуры Биметаллические датчики температуры
- •Термопары
- •Проволочные термосопротивления
- •Полупроводниковые термосопротивления (термисторы)
- •4.5. Датчики давления
- •Контрольные вопросы
- •Глава 5 задающие устройства и устройства сравнения
- •5.1. Задающие устройства
- •5.2. Устройства сравнения
- •Глава 6 усилители
- •6.1. Общие сведения
- •6.2. Магнитные усилители
- •6.3. Электромашинные усилители
- •6.4. Полупроводниковые усилители Усилители на биполярном транзисторе
- •Усилители напряжения на полевом транзисторе
- •Операционные усилители
- •Универсальные оу
- •Прецизионные операционные усилители
- •Мощные операционные усилители
- •Операционные усилители в моделировании математических операций
- •Электрометрические и измерительные усилители
- •Многокаскадные усилители
- •Усилители мощности
- •Контрольные вопросы
- •Глава 7 переключающие устройства (реле)
- •7.1. Общие сведения и классификация реле
- •7.2. Нейтральные электромагнитные реле постоянного тока
- •7.3. Тяговые и механические характеристики электромагнитного реле
- •7.4. Электромагнитные реле переменного тока
- •7.5. Поляризованные электромагнитные реле
- •7.6. Контакты реле. Средства дуго- и искрогашения
- •7.7. Реле времени
- •7.8. Тепловые реле
- •Глава 8 исполнительные устройства
- •8.1. Общие характеристики исполнительных устройств
- •8.2. Электрические серводвигатели
- •Электродвигатели постоянного тока с независимым возбуждением
- •Электродвигатели постоянного тока с последовательным возбуждением
- •Серводвигатели переменного тока
- •8.3. Гидравлические двигатели
- •8.4. Сервоприводы с электромагнитными муфтами
- •8.5. Шаговые сервоприводы
- •Контрольные вопросы
- •Глава 9 типовые звенья сау
- •9.1. Режимы работы объекта. Возмущающие воздействия
- •9.2. Апериодическое (инерционное, статическое) звено
- •9.3. Астатическое (интегрирующее) звено
- •9.4. Колебательное (апериодическое 2-го порядка) звено
- •9.5. Пропорциональное (усилительное, безынерционное) звено
- •9.6. Дифференцирующее звено
- •9.7. Запаздывающее звено
- •9.8. Логарифмические частотные характеристики динамических звеньев
- •Контрольные вопросы
- •Глава 10 соединение звеньев в сау
- •10.1. Типовые соединения звеньев
- •Последовательное соединение звеньев
- •Параллельно-согласованное соединение звеньев
- •10.2. Сложные соединения звеньев
- •10.3. Аппроксимация сложных объектов совокупностью нескольких типовых звеньев
- •Контрольные вопросы
- •Глава 11 синтез сау или выбор типа регулятора
- •11.1. Структурные схемы сау
- •11.2. Понятие обратной связи
- •11.3. Классификация регуляторов по реализуемому закону регулирования
- •Контрольные вопросы
- •Глава 12 анализ устойчивости и качества работы сау
- •12.1. Понятие устойчивости сау
- •12.2 Показатели качества работы сау
- •12.3. Оптимальные процессы регулирования
- •12.4. Анализ устойчивости замкнутой системы
- •12.5. Вывод характеристического уравнения замкнутой системы из передаточных функций объекта и регулятора
- •12.6. Критерии устойчивости сау Алгебраический критерий устойчивости Рауса-Гурвица
- •Частотный критерий устойчивости Михайлова
- •Частотный критерий устойчивости Найквиста
- •12.7. Анализ качества работы замкнутой сау
- •Глава 13 цифровые системы автоматического управления
- •13.1. Включение эвм в сау
- •13.2. Логические устройства автоматики
- •Релейно-контактные схемы
- •Изображение основных логических элементов на схемах
- •Минимизация логических функций
- •Бесконтактные логические элементы
- •Синтез логических устройств
- •13.3. Системы числового программного управления
- •13.4. Промышленные роботы
- •13.5. Управляющие микроЭвм и микроконтроллеры Структура цифровых систем управления
- •МикроЭвм и микроконтроллеры в системах управления технологическими процессами
- •Контрольные вопросы
- •Глава 14 системы телемеханики
- •14.1. Основные понятия
- •14.2. Принципы построения систем телемеханики
- •14.3. Линии связи
- •14.4. Методы преобразования сигналов
- •Непрерывные методы модуляции
- •Импульсные методы модуляции
- •Цифровые методы модуляции
- •14.5. Асу технологическими процессами и производством
- •Контрольные вопросы
- •Экспериментальное определение динамических характеристик объектов регулирования
- •Выбор регуляторов
- •Выбор регуляторов на основании расчета
- •Выбор оптимальных значений параметров регуляторов
Контрольные вопросы
Каковы назначение усилителей в составе САУ и их основные характеристики?
Каковы принцип действия и характеристики однотактного магнитного усилителя?
Каковы схема и преимущества двухтактного магнитного усилителя?
В чем заключается принцип действия электромашинного усилителя и какова его статическая характеристика?
Поясните схему и принцип действия электромашинного усилителя с поперечным полем.
Как работает схема усилителя на биполярном транзисторе?
Поясните принцип действия усилителя на полевом транзисторе и его частотную характеристику.
Каковы особенности построения операционных усилителей: универсальных, прецизионных, регулируемых, мощных высоковольтных?
Как используются ОУ в моделировании математических операций?
В чем состоят особенности построения электрометрических и измерительных усилителей?
Каковы принципы построения многокаскадных усилителей?
Каковы принципы построения усилителей мощности и их основные параметры?
Глава 7 переключающие устройства (реле)
7.1. Общие сведения и классификация реле
В системах автоматики и телемеханики одним из наиболее распространенных элементов является реле. Реле — это устройство, которое автоматически осуществляет скачкообразное изменение (переключение) выходного сигнала под воздействием управляющего сигнала, изменяющегося непрерывно в определенных пределах.
Электрическое реле является промежуточным элементом, который приводит в действие одну или несколько управляемых электрических цепей при воздействии на него определенных электрических сигналов управляющей цепи (рис. 7.1).
Основные параметры реле:
мощность срабатывания Рср — минимальная электрическая мощность, которая должна быть подведена к реле от управляющей цепи для его надежного срабатывания, т. е. приведения в действие управляемой цепи. Эта мощность определяется общими электрическими и конструктивными параметрами реле;
мощность управления Ру — максимальная электрическая мощность в управляемой цепи, при которой контакты реле еще работают надежно. Мощность управления определяется параметрами контактов реле, переключающих управляемую цепь;
допустимая разрывная мощность Рр — мощность в цепи, разрываемой контактами при
определенном токе или напряжении без образования устойчивой электрической дуги, при данном напряжении;
коэффициент управления Ку — величина, характеризующая отношение управляемой мощности к мощности срабатывания реле:
Ky = Py / Pср ≥ 1
время срабатывания tср — интервал времени от момента поступления сигнала из управляющей цепи до момента начала воздействия реле на управляемую цепь. Допустимое значение /ср определяется необходимой быстротой передачи сигнала в управляемую цепь.
Выбор типа реле производится в соответствии со значениями Рср и Ру, так как эти параметры постоянны для отдельных конструкций реле.
Существующие типы реле можно классифицировать по следующим признакам:
назначению — управления, защиты, сигнализации;
принципу действия — электромеханические (электромагнитные, нейтральные, электромагнитные поляризованные, магнитоэлектрические, электродинамические, индукционные, электротермические), магнитные бесконтактные, электронные, триггерные (бесконтактно-электронные), фотоэлектронные, ионные;
измеряемой величине — электрические (тока, напряжения, мощности, сопротивления, частоты, коэффициента мощности), механические (силы, давления, скорости, перемещения, уровня, объема и т.д.), тепловые (температуры, количества теплоты), оптические, силы звука и других физических величин (времени, вязкости и т.д.);
мощности управления — маломощные (Ру ≤ 1 Вт), средней мощности (Ру = 1... 10 Вт), мощные (Ру > 10 Вт);
времени срабатывания — безынерционные (tср ≤ 0,001 с), быстродействующие (tср = 0,001...0,05 с), замедленные (tср = 0,15... 1 с), реле времени (tср> 1 с).
Наиболее распространены электромеханические реле, в которых изменение входной электрической величины вызывает механическое перемещение подвижной части — якоря, приводящее к замыканию или размыканию контактов.