
- •1. Информация о дисциплине
- •1.1. Предисловие
- •1.2. Содержание дисциплины и виды учебной работы
- •1.2.1. Объем дисциплины «Финансовая математика» и виды учебной работы
- •1.2.2. Перечень видов практических занятий и видов контроля
- •2. Рабочие учебные материалы
- •2.1. Рабочая программа (объем дисциплины 150 часов)
- •Раздел 1. Наращение и дисконтирование денежных сумм (38 часов)
- •Раздел 2. Потоки платежей (25 часов)
- •Раздел 3. Некоторые схемы погашения кредитов. Оценки инвестиционных проектов (25 часов)
- •Раздел 4. Облигации (24 часов)
- •Раздел 5. Финансовые операции в условиях неопределенности (23 часа)
- •Раздел 6. Статистические характеристики. Элементы технического анализа и моделирование цены акции (13 часов)
- •2.2. Тематический план дисциплины «Финансовая математика»
- •2.2.1. Тематический план дисциплины для студентов очной формы обучения
- •2.2.2. Тематический план дисциплины для студентов очно-заочной формы обучения
- •2.2.3. Тематический план дисциплины для студентов заочной формы обучения
- •2 Классическая финансовая математика Анализ финансового рынка .3. Структурно-логическая схема дисциплины «Финансовая математика»
- •Раздел 1. Наращение и дисконтирование денежных сумм
- •Раздел 3. Некоторые схе-мы погашения кредитов
- •Раздел 2. Потоки платежей
- •Раздел 6.
- •Раздел 5. Финансовые операции в условиях неопределенности
- •2.4. Практический блок
- •2.4.1. Лабораторный практикум (очная форма обучения)
- •2.4.2. Лабораторный практикум (очно-заочная форма обучения)
- •2.4.3. Лабораторный практикум (заочная форма обучения)
- •2.5. Временной график изучения дисциплины
- •2.6. Рейтинговая система
- •3. Иформационные ресурсы дисциплины
- •3.1. Библиографический список
- •3.2. Опорный конспект по дисциплине введение
- •Раздел 1. Наращение и дисконтирование денежных сумм
- •1.1. Наращение денежных сумм
- •1.1.1 Проценты и процентные ставки
- •Пример 1.1.1
- •Решение
- •1.1.2. Наращение по простой процентной ставке
- •Пример 1.1.2
- •Решение
- •1.1.3. Наращение по сложной процентной ставке
- •Пример 1.1.3
- •Решение
- •1.1.4. Переменные процентные ставки
- •Пример 1.1.4
- •Решение
- •1.2. Дисконтирование денежных сумм
- •1.2.1. Дисконтирование по простой процентной ставке
- •1.2.2. Дисконтирование по сложной процентной ставке
- •Пример 1.2.1
- •Решение
- •1.2.3. Непрерывное дисконтирование
- •1.2.4. Банковский учет
- •Пример 1.2.2
- •Решение
- •1.3. Производные процентные расчеты
- •1.3.1. Номинальная и эффективная ставки
- •1.3.2. Эквивалентность денежных сумм
- •Пример 1.3.3
- •Решение
- •1.4. Начисление процентов с учетом налогов
- •1.4.1. Рассмотрим схему начисления простых процентов
- •1.4.2. Рассмотрим схему начисления сложных процентов
- •Пример 1.4.1
- •Решение
- •1.5. Начисление процентов с учетом инфляции
- •1.5.1. Темп инфляции
- •1.5.2. Наращение с учетом инфляции
- •1.5.3. Брутто-ставка
- •1.5.4. Реальная ставка процентов
- •Вопросы для самопроверки
- •Раздел 2. Потоки платежей
- •2.1. Финансовые ренты
- •2.2. Будущая стоимость ренты
- •2.2.1 Наращенная сумма годовой ренты постнумерандо
- •2.2.2. Наращенная сумма годовой ренты пренумерандо
- •2.2.3. Наращенная сумма годовой ренты с начальным взносом
- •Пример 2.2.1
- •Решение
- •2.3. Формула наращенной суммы постоянной p-срочной ренты
- •2.3.1. Формула наращенной суммы, в которой начисление процентов и поступления платежей совпадают по времени
- •Пример 2.3.1
- •Решение
- •2.3.2. Формула наращенной суммы, в которой начисление процентов и поступления платежей не совпадают по времени
- •Пример 2.3.2
- •Решение
- •2.4. Современная стоимость ренты
- •2.4.1. Современная стоимость годовой ренты постнумерандо
- •2.4.2. Современная стоимость годовой ренты пренумерандо
- •Пример 2.4.1
- •Решение
- •2.4.3. Современная стоимость ренты с взносом в конце срока
- •Пример 2.4.2
- •Решение
- •2.4.4. Формула современной стоимости постоянной p-срочной ренты
- •2.5. Определение величины платежа ренты
- •2.5.1. Определение величины платежа ренты, когда известна будущая стоимость ренты
- •Пример 2.5.1
- •Решение
- •2.5.2. Определение величины платежа ренты, когда известна современная стоимость ренты
- •Пример 2.5.2
- •Решение
- •Вопросы для самопроверки
- •Раздел 3. Некоторые схемы погашения кредитов Оценки инвестиционных проектов
- •3.1. Погашение кредита равными платежами
- •3.1.1. Определение размера платежа
- •Пример 3.1.1
- •Решение
- •3.1.2. Разделение платежей на части
- •Пример 3.1.2
- •Решение
- •3.2. Правило торговца
- •Пример 3.2.1
- •Решение
- •3.3. Чистая приведенная стоимость
- •Пример 3.3.1
- •Решение
- •3.4. Внутренняя ставка дохода
- •Пример 3.4.1
- •Решение
- •3.5. Срок окупаемости
- •Пример 3.5.1
- •Решение
- •Вопросы для самопроверки
- •Раздел 4. Облигации
- •4.1. Цена облигации
- •4.1.1. Цена облигации с выкупом в конце срока
- •Пример 4.1.1
- •Решение
- •4.1.2. Цена бескупонной облигации
- •4.2. Курс облигации
- •Пример 4.2.1
- •Решение
- •4.3. Доходность облигации
- •4.3.1. Доходность облигации с выкупом в конце срока
- •Пример 4.3.1
- •Решение
- •4.3.2. Доходность облигации с нулевым купоном
- •Пример 4.3.2
- •4.4. Дюрация
- •4.4.1. Дюрация по Маколею
- •Пример 4.4.1
- •Решение
- •4.4.2. Волатильность цены. Модифицированная дюрация
- •Пример 4.4.2
- •Решение
- •Вопросы для самопроверки
- •Раздел 5. Оценки финансовых операций в условиях неопределенности
- •5.1. Оценки финансовых операций в условиях полной неопределенности
- •Пример 5.1.1
- •5.1.1. Критерий Вальда (крайнего пессимизма)
- •Пример 5.1.2
- •Решение
- •5.1.2. Критерий Сэвиджа (минимального риска)
- •Пример 5.1.3
- •Решение
- •Критерий Сэвиджа
- •Пример 5.1.4
- •Решение
- •5.2. Оценки финансовых операций в условиях частичной неопределенности
- •Пример 5.2.1
- •Решение
- •5.3. Ожидаемая доходность и риск портфеля ценных бумаг
- •Риск портфеля ценных бумаг. Диверсификация
- •5.3.1 Ожидаемая доходность портфеля ценных бумаг
- •5.3.2. Коэффициент корреляции
- •5.3.3. Риск портфеля ценных бумаг
- •5.3.4. Диверсификация портфеля
- •Пример 5.3.1
- •Решение
- •5.4. Оптимальный портфель ценных бумаг
- •5.4.1. Портфель Марковица минимального риска
- •5.4.2. Портфель минимального риска из некоррелированных бумаг
- •Пример 5.4.1
- •Решение
- •Вопросы для самопроверки
- •6. Статистические характеристики портфелей. Моделирование цены акции
- •6.1. Средняя доходность и риск финансовой операции
- •6.1.1. Средняя доходность финансовой операции равна среднему арифметическому фактических доходностей по всем n наблюдениям
- •Пример 6.1.1
- •Решение
- •6.1.2. Оценка риска финансовой операции
- •Пример 6.1.2
- •Решение
- •6.1.3. Среднегодовые доходность и риск
- •6.2. Средняя доходность и риск портфеля
- •6.2.1. Ожидаемая доходность портфеля
- •6.2.2. Выборочный коэффициент ковариации
- •6.2.3. Дисперсия и риск портфеля
- •6.2.4. Портфель Марковица минимального риска
- •Пример 6.2.1
- •Решение
- •6.3. Технический анализ цен
- •6.3.1. Ценовой тренд
- •6.3.2. Линия сопротивления
- •6.3.3. Линии поддержки
- •6.4. Модель цены акции
- •Пример 6.4.1
- •6.5. Скользящее среднее
- •Вопросы для самопроверки
- •Заключение
- •3.3. Глоссарий
- •3.4. Методические указания к выполнению лабораторных работ Работа 1. Финансовые вычисления в Excel
- •1. Цель работы
- •2. Основные теоретические положения
- •3. Порядок выполнения работы
- •3.1. Выполнение задания 1
- •Пример 1
- •Решение
- •3.1.1. Ввод исходных данных в таблицу
- •3.1.2. Расчет доли года. Ввод комментариев
- •3.1.3. Расчет процентной ставки
- •3.2. Выполнение задания 2
- •3.2.1. Описание функции бс (будущая сумма)
- •3.2.2. Вызов функции бс
- •3.2.3. Ввод аргументов
- •3.3. Выполнение задания 3 Пример 2
- •Решение
- •3.3.1. Ввод комментариев и исходных данных
- •3.4. Выполнение задания 4
- •Пример 3
- •Решение
- •3.4.2. Использование функции бс и ввод аргументов
- •3.4.3. Расчет накопленной суммы при взносах в начале периода
- •3.5. Выполнение задания 5
- •Пример 4
- •Решение
- •3.6. Выполнение задания 6
- •Пример 5
- •Решение
- •3.6.2. Определение числа периодов в годах при начислении процентов раз в году
- •3.6.3. Определение числа периодов в годах при начислении процентов поквартально
- •3.6.4. Редактирование формулы кпер
- •3.7. Выполнение задания 7 Пример 6
- •Решение
- •Работа 2. Оценка инвестиционных проектов
- •2.2. Оценка инвестиционных проектов (ип) в общем случае
- •3. Порядок выполнения работы
- •3.1. Выполнение задания 1. Расчет будущей стоимости ип
- •3.2. Выполнение задания 2. Расчет текущей стоимости ип
- •3.3. Выполнение задания 3. Оценка ип с использованием специальных функций Excel
- •3.3.4. Расчет индекса рентабельности (рi):
- •3.4. Самостоятельная работа
- •4. Отчет по работе
- •Работа 3. Определение цены облигации
- •1. Цель работы
- •2. Основные теоретические положения
- •3. Порядок выполнения работы
- •3.1. Порядок выполнения задания 1
- •3.2. Порядок выполнения задания 2
- •4. Отчет по работе
- •Работа 4. Определение курса облигации
- •1. Цель работы
- •2. Основные теоретические положения
- •3. Порядок выполнения работы
- •3.1. Порядок выполнения задания 1
- •3.1. Порядок выполнения задания 2
- •4. Отчет по работе
- •Работа 5. Доходность облигации
- •1. Цель работы
- •2. Основные теоретические положения
- •3. Порядок выполнения работы
- •3.1. Порядок выполнения задания 1
- •3.2. Порядок выполнения задания 2
- •4. Отчет по работе
- •Работа 6. Модифицированная дюрация
- •1. Цель работы
- •2. Основные теоретические положения
- •3. Порядок выполнения работы
- •4. Отчет по работе
- •Работа 7. Вычисления характеристик портфеля некоррелированных бумаг. Оптимальный портфель
- •1. Цель работы
- •2. Основные теоретические положения
- •3. Порядок выполнения работы
- •3.1. Порядок выполнения задания 1
- •3.3.2. Порядок выполнения задания 2
- •3.3. Порядок выполнения задания 3
- •4. Отчет по работе
- •Работа 8. Моделирование цены акции. Сглаживание по методу скользящего среднего
- •1. Цель работы
- •2. Основные теоретические положения
- •3. Порядок выполнения работы
- •3.1. Порядок выполнения задания 1
- •3.2. Порядок выполнения задания 2
- •4. Отчет по работе
- •4. Блок контроля освоения дисциплины
- •4.1. Задание на контрольную работу
- •Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •4.2. Методические указания к выполнению контрольной работы
- •4.2.1. Общие методические указания
- •4.2.2. Проценты и процентные ставки
- •4.2.3. Наращение по простой процентной ставке
- •Решение
- •4.2.4. Наращение по сложной процентной ставке
- •4.2.5. Математическое дисконтирование
- •Решение
- •4.2.6. Консолидация платежей
- •4.2.6.1. Определение размера консолидированного платежа
- •Решение
- •4.2.6.2. Определение срока консолидированного платежа
- •Решение
- •4.2.7. Правило торговца
- •Решение
- •4.2.8. Анализ инвестиционных проектов
- •4.2.8.1. Чистая приведенная стоимость
- •4.2.8.2. Чистый наращенный доход
- •4.2.8.3. Индекс рентабельности
- •4.2.8.4. Срок окупаемости, внутренняя ставка дохода
- •4.2.9. Внутренняя ставка дохода
- •Решение
- •4.2.10. Эквивалентность финансовых обязательств
- •Решение
- •4.3. Блок тренировочных тестов Тест № 1
- •Тест № 2
- •Тест № 3
- •Тест № 4
- •Тест № 5
- •Тест № 6
- •4.3.1. Таблица правильных ответов на вопросы тренировочных тестов
- •4.4. Итоговый контроль Тест № 1
- •Тест № 2
- •Тест № 3
- •Тест № 4
- •Тест № 5
- •Тест № 6
- •4.5. Вопросы к зачету
- •4.5.1. Часть 1
- •4.5.2. Часть 2
- •Содержание
- •Раздел 1. Наращение и дисконтирование денежных сумм 19
- •Раздел 2. Потоки платежей 34
- •Раздел 3. Некоторые схемы погашения кредитов 43
- •Раздел 4. Облигации 49
- •Раздел 5. Оценки финансовых операций в условиях неопределенности 57
- •Финансовая математика
- •191186, Санкт-Петербург, ул. Миллионная, д. 5
6.4. Модель цены акции
В финансовой теории принята концепция случайного блуждания финансового актива:
доходность актива изменяется случайным образом,
не зависит от предыдущих изменений,
не оказывает влияние на последующие доходности.
Допустим, что по историческим данным найдена средняя годовая доходность и годовая волатильность
.
Значения средней доходности и волатильности за t дней будут равны
,
.
Здесь
введено обозначение
.
Допустим, что фактическая доходность за t дней является нормально распределенной случайной величиной с математическим ожиданием и стандартным отклонением , т.е.
Здесь
обозначает нормально распределенную
величину с математическим ожиданием 0
и стандартным отклонением 1. Следовательно,
фактическая доходность состоит из
средней доходности
и случайного отклонения фактической доходности от средней доходности
i
(6.4.1)
Из формулы (6.4.1) следует, что цены акции образуют последовательность случайных величин
(6.4.2)
Формула (6.4.2) отражает теорию эффективного рынка, согласно которой в каждый момент времени в цене актива уже нашла отражение вся прошлая информация. Это означает, что для прогнозирования цены акции имеет значение только ее текущее значение, а прошлые значения цены можно использовать для определения средней доходности и волатильности.
Пример 6.4.1
Пусть
годовая доходность и годовая волатильность
=0,14,
σ
= 0,2, и в начальный момент цена акции S0
= 20.
Смоделируем
ежедневные цены акции в течение 25 дней
(табл. 6.4.1). Величина t = 1,
.
Таблица 6.4.1
Дни |
ξi |
Si |
Дни |
ξi |
Si |
1 |
|
20 |
14 |
0,303629 |
17,89816 |
2 |
0,004151 |
19,34343 |
15 |
0,157201 |
17,68042 |
3 |
0,076022 |
19,0038 |
16 |
0,944304 |
18,04635 |
4 |
0,003265 |
18,36064 |
17 |
0,359355 |
17,97424 |
5 |
0,104984 |
18,07977 |
18 |
0,825587 |
18,19731 |
6 |
0,713523 |
18,21881 |
19 |
0,67098 |
18,30938 |
7 |
0,955077 |
18,6199 |
20 |
0,767541 |
18,48888 |
8 |
0,104831 |
18,33486 |
21 |
0,985504 |
19,0099 |
9 |
0,305277 |
18,22702 |
22 |
0,091342 |
18,70013 |
10 |
0,435743 |
18,19993 |
23 |
0,146458 |
18,46182 |
11 |
0,30549 |
18,09302 |
24 |
0,407361 |
18,41743 |
12 |
0,043214 |
17,71076 |
25 |
0,212653 |
18,24202 |
13 |
0,897916 |
18,00513 |
26 |
0,932737 |
18,59754 |
Во втором столбце расположены значения нормально распределенной случайной величины с математическим ожиданием 0 и стандартным отклонением 1, которые определяют случайную часть цены акции. В третьем столбце вычислены цены акции по формуле
.
Ниже (рис. 6.4.1) графически показана динамика цены акции.
Рис. 6.4.1
Из графика цены акции видно, что первые пять дней наблюдается убывающий тренд, затем следует боковой, возрастающий и убывающий тренды.