Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Н.М. Сутырин. Техника и технология отраслей гор...doc
Скачиваний:
132
Добавлен:
29.08.2019
Размер:
6.9 Mб
Скачать

6.3. Тепловые пункты и схемы присоединения потребителей

Тепловые пункты в системах теплоснабжения предназначены для присоединения систем отопления, вентиляции, горячего водоснабжения и технологических установок потребителей к тепловым сетям. Тепловые пункты подразделяются на индивидуальные для присоединения одного здания и центральные - для двух и более зданий.

В системе теплоснабжения тепловые пункты выполняют следующие основные функции:

  • присоединения местных систем отопления, вентиляции и горячего водоснабжения зданий к центральной системе теплоснабжения;

  • юридической границы раздела ответственности между теплоснабжающей организацией и потребителем теплоты;

  • защиты местных систем от повышенного давления и температуры греющего теплоносителя;

  • автоматического поддержания и регулирования параметров и расхода теплоносителя в соответствии с изменением температуры наружного воздуха и требованиями потребителя;

  • приготовления и аккумулирования горячей воды с требуемыми параметрами;

  • коммерческого учета отпуска теплоты потребителям.

Правильное функционирование тепловых пунктов определяет экономичность использования теплоносителя и теплоты потребителям. Для выполнения основных функций тепловые пункты оснащаются специальным оборудованием, арматурой, контрольно-измерительными приборами и автоматикой (КИПиА). Схемы и оборудование тепловых пунктов выбираются с учетом:

  • характеристики источника теплоты;

  • параметров теплоносителя и режима отпуска теплоты;

  • гидравлической характеристики внешней тепловой сети;

  • технических характеристик местных систем теплоснабжения.

При проектировании тепловых пунктов основным вопросом является выбор между открытой и закрытой системой теплоснабжения и между зависимой и независимой схемой присоединения потребителей. Исторически сложилось так, что в РФ применяются две принципиально различные схемы теплоснабжения потребителей:

  • открытая, с зависимым присоединением систем отопления и вентиляции зданий и непосредственным водоразбором на нужды горячего водоснабжения;

  • закрытая, с независимым присоединением систем отопления, вентиляции и горячего водоснабжения потребителей через теплообменники.

В настоящее время наибольшее применение имеют зависимые схемы присоединения как более простые. В этом случае система отопления здания гидравлически связана с тепловой сетью и работает под давлением, близким давлению в обратной магистрали внешней сети. Циркуляция воды обеспечивается за счет разности давлений в подающем и обратном трубопроводе тепловой сети. Простейшей из зависимых является схема с непосредственным присоединением, при которой вода из тепловой сети без смешения поступает в систему отопления. Это возможно если расчетные параметры систем теплоснабжения и отопления совпадают. Например, при работе системы теплоснабжения с максимальной температурой теплоносителя 95С.

В городских системах теплоснабжения температура теплоносителя, как правило, достигает 150С. Поэтому большинство зданий подключено по зависимой схеме с элеватором (рис. 6.1а), в котором теплоноситель из подающего трубопровода попадает в сопло, где из-за уменьшения диаметра резко увеличивается скорость потока при одновременном снижении давления, что обеспечивает подсос остывшего теплоносителя из обратного трубопровода и его смешение с более горячим теплоносителем. Работа элеватора выполняется за счет перепада давлений в системе теплоснабжения. Преимуществом этой схемы является низкая стоимость и высокая степень надежности элеватора как смесительного насоса. При любом температурном графике необходимый коэффициент смешения определяют по формуле:

U= , (6.1)

где Т1 и Т2 - соответственно температура теплоносителя в прямом и обратном трубопроводе;

Тсм - температура воды после элеватора.

Диаметр сопла элеватора определяется по формуле:

dc = 8,5 , (6.2)

где Gc - расчетный расход сетевой воды, т/час;

h - потери напора в системе отопления здания, м.

Для нормальной работы элеватора важно, чтобы необходимая разность напоров теплоносителя перед тепловым пунктом была не менее 15 м вод. ст. Если это условие не выполняется, тогда снижается коэффициент смешения, что приводит к перерасходу сетевой воды и, следовательно, теплоты.

большие возможности по регулированию отпуска теплоты имеют схемы присоединения систем отопления с насосами. Наиболее распространенной является схема включения насоса на перемычке между прямой и обратной трубами теплового пункта, что дает экономию электроэнергии. Установка насосов на прямой и обратной линии рекомендуется в случае необходимости создания дополнительной разности напоров для циркуляции воды в местных системах. Наличие насоса в схеме присоединения позволяет проводить более совершенное регулирование отпуска теплоты в систему теплоснабжения в зависимости от температуры наружного воздуха, по специально заданному временному графику с применением регуляторов расхода или частотных регуляторов электропривода насоса. Необходимым условиям для применения этих схем является применение компактных, надежных и бесшумных насосов.

При открытой системе теплоснабжения установки горячего водоснабжения присоединяются через смесители, регуляторы температуры воды. Экономичная и надежная работа таких пунктов возможна только при наличии надежной работы авторегулятора температуры воды.

Все преимущества открытой системы теплоснабжения сводятся к упрощению и удешевлению абонентских вводов потребителей и в меньшей степени - повышению долговечности внутридомовых систем горячего водоснабжения. Вместе с тем при открытой системе теплоснабжения стоимость источника теплоты увеличивается на 20-25% за счет усложнения системы водоподготовки. Одновременно возрастают эксплуатационные затраты, что обусловлено, во-первых, перерасходом воды, реагентов и электроэнергии на подготовку и подачу горячей воды потребителям, во-вторых, низкой надежностью открытых систем теплоснабжения, вследствие высокой коррозийной активностью теплоносителя. Это ведет к росту затрат, связанных с ликвидацией аварий, восполнением утечек и сливов теплоносителя, ремонтом и заменой сетей, арматуры и оборудования. Дополнительные потери возникают из-за невозможности в переходные периоды года поддерживать температуру теплоносителя менее 70С при температурах воздуха выше 0С, что ведет к "перетопу", т.е. необоснованному увеличению расхода теплоты на отопление зданий.

В связи с этим необходимо рассмотреть преимущества и недостатки закрытых систем теплоснабжения, в которых вода используется только как средство доставки теплоты и из сетей не отбирается. При проектировании тепловых пунктов для закрытой системы теплоснабжения основным вопросом является схема присоединения подогревателей горячего водоснабжения. Выбор схемы присоединения ГВС определяется расчетным расходом воды, режимом регулирования и производится на основании технико-экономического сравнения параллельной и смешанной схем. Данные схемы могут дополняться баками аккумуляторами, с помощью которых выравнивается график нагрузки горячего водоснабжения и обеспечивается резерв на случай непродолжительного перерыва теплоснабжения. Объем аккумуляторного бака должен быть равен 4-6 часовому расходу горячей воды. В этом случае расчет и выбор оборудования ведется по среднечасовому расходу горячей воды и, следовательно, уменьшается поверхность нагрева подогревателей и стоимость теплового пункта.

В последнее время появилась возможность перехода на закрытую систему теплоснабжения с независимым присоединением и систем отопления зданий. В этом случае система отопления присоединяется к тепловой сети через поверхностный теплообменник. В качестве подогревателей в закрытых независимых системах рекомендуется устанавливать пластинчатые теплообменники, нагревающая поверхность которых состоит из набора пластин с каналами для прохода греющей и нагреваемой жидкостей. Пластины изготавливаются из нержавеющей стали и закрепляются между неподвижной и подвижной плитами или спаиваются. Необходимое число и параметры пластин определяются с помощью ЭВМ в соответствии с физическими свойствами, расходами и параметрами жидкостей. Пластины гофрированы, что способствует турбулизации потока. Поэтому пластинчатые теплообменники имеют высокий коэффициент теплопередачи, что обеспечивает теплообмен при разности температур в 3-5 градуса. При одинаковой тепловой мощности пластинчатые теплообменники в 3-5 раз меньше по габаритам и в 6 раз по массе, чем кожухотрубные.

В связи с этим основным элементом современных систем теплоснабжения должны стать индивидуальные высокоэффективные тепловые пункты моноблочного исполнения. В состав этих блоков входят пластинчатые теплообменники, бес фундаментные и бесшумные насосные установки, контрольно-измерительные приборы, системы учета и автоматического регулирования тепло отпуска.

Усложнение и удорожание оборудования индивидуальных тепловых пунктов закрытых независимых систем теплоснабжения компенсируется за счет экономии капитальных вложений и эксплуатационных затрат в других элементах системы. В частности, за счет упрощения схемы и уменьшения производительности системы водоподготовки можно на 20% снизить капитальные вложения в источник теплоснабжения. Благодаря гидравлической изолированности внешней и внутренней систем теплоснабжения обеспечивается стабильное качество горячей воды и высокий уровень комфортности отапливаемых помещений. Экономия теплоты за счет автоматического регулирования тепло отпуска может составить 15-20%. Существенно сокращается расход теплоносителя, так как прекращается непосредственный водоразбор из тепловой сети. Одновременно уменьшаются затраты на подготовку воду и перекачку теплоносителя.