Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
книга БАС.doc
Скачиваний:
203
Добавлен:
21.08.2019
Размер:
4.66 Mб
Скачать

2.1.5.4. Реакции аминоалкилирования

Механизм реакции аминоалкилирования является обычным для введения углеродных остатков в ароматический цикл. Образование карбокатиона происходит за счет присоединения амина к формальдегиду:

Подобно формальдегиду реагируют и другие алифатические и ароматические альдегиды. Помимо ароматических соединений в реакции вступают СН-кислоты и кетоны. К превращениям данного типа относятся реакции Манниха, Айнхорна и Бетти.

Препарат феникаберан обладает спазмолитическим, антиаритмическим действием, используется для лечения хронической коронарной недостаточности с приступами стенокардии. В синтезе данного лекарственного средства введение диметиламинометильной группы осуществляют с помощью реакции Манниха:

Синтез исходного гидроксибензоксазола приведен в разделе 2.7.

2.1.5.5. Реакции с-ацилирования

Одной из широко распространенных реакций электрофильного замещения в ряду ароматических соединений являются реакции С-ацилирования. При этом образуются арилкетоны. Реагентами служат те соединения, которые под действием катализатора могут генерировать ацильный карбокатион.

Реагенты. R-COCl, (RCO)2O, RCOOAlk, RCOOH, R-CN, Hal-CN. Реакционная способность тем выше, чем больше положительный заряд на атоме углерода:

R-COHal > (RCO)2O > RCOOAlk > RCOOH > RCONH2

В случае использования галогенангидридов наиболее активными являются бромангидриды кислот:

RCOF < RCOCl < RCOBr.

Катализаторы те же, что и при алкилировании, но в основном кислоты Льюиса. Для малореакционноспособных соединений применяют Al2Cl6, т. к. его реакционная способность высокая. Для высокореакционноспособных субстратов могут быть использованы ZnCl2, FeCl3.

Механизм реакции. В апротонных растворителях с помощью ИК и ЯМР спектроскопии было зафиксировано образование карбокатиона в виде тесной ионной пары:

Образование карбокатиона (иона ацилия) облегчено по сравнению с другими реакциями этого типа. Но его реакционная способность ниже, чем в случае применения Alk+ AlX4-. Электрофильная атака активированного реагента на ароматический цикл обычна для реакций электрофильного замещения:

Однако конечный продукт остается связанным с катализатором, разложение комплекса осуществляют с помощью добавления воды. Таким образом, катализатор не регенерируется. При использовании ангидридов, катализатор связывается и с кислотой. Поэтому необходимо использовать 1 или 2 – 2,5 мол катализатора. Кинетическое уравнение процесса имеет следующий вид:

V= Кобщ [ArH][R-COX][AlCl3] V= Кобщ [ArH][(R-COO)2O][AlCl3]2

В отличие от реакции алкилирования, чувствительность реакции к действию заместителей существенно выше,  = -7…-9,5 (для алкилирования  = -2.. -3), т. е. реакции С-ацилирования существенно более региоселективны. Кроме того, введение ацильной группы в ядро приводит к снижению реакционной способности полученного соединения по сравнению с исходным субстратом COR > 0. Так для COCH3+n = + 0,5, m = + 0,38. Реакции имеют строгую стадийность, а также, в отличие от алкилирования, не наблюдается изомеризация алкильного остатка. Потому, при необходимости введения в молекулу целевого продукта алкильной группы, целесообразнее получить соответствующий кетон и затем восстановить его до алкильного производного.

Наиболее крупнотоннажным производством является получение антрахинона и большого ряда его производных (красителей). Реакцию с фталевым ангидридом ведут в избытке бензола, являющегося растворителем и реагентом. Если после окончания процесса проводят разложение реакционной массы водой, то получают 2-карбоксибензофенон (бензоилбензойную кислоту), нагревание которого в серной кислоте приводит к циклизации и образованию антрахинона. Повышение температуры после завершения первой стадии реакции ацилирования дает непосредственно антрахинон. Разработан также способ непрерывного проведения процесса в газовой фазе при 400 оС на гетерогенном катализаторе, в качестве которого используют силикат цинка. Полученные пары антрахинона и воды охлаждают и отделяют целевой продукт.

Реакцией фталевого ангидрида с гидрохиноном в плаве AlCl3 – NaCl при 170 оС получают 1,4-дигидроксиантрахинон – краситель хинизарин.

При использовании высокореакционноспособного субстрата ацилирования, каким является фенол, катализатором может служить хлорид цинка.

Реакция не останавливается на первой стадии. Полученный кетон также дает карбокатион и реагирует с фенолом. Образующийся триарилгидроксиметан дает лактон – бесцветную форму фенолфталеина (биологическую активность см. раздел 2.1.5). При добавлении щелочи лактонный цикл раскрывается и образуется хиноидная форма, имеющая в растворе красный цвет. При внесении в плав резорцина и фталевого ангидрида безводного хлорида цинка при температуре 105 оС происходит аналогичная реакция. При повышении температуры реакционной массы до 170 – 195 оС продукт дает ксантеновый цикл:

Натриевая соль полученного красителя флюоресцеина в водных растворах дает зеленую флюоресценцию при разбавлении 1:40 000 000. Это свойство используют для слежения за движением воды, для денатурации спирта и для ангиодиагностики. Тетрабромпроизводное – эозин – применяется в цитологии для окрашивания срезов биологических тканей. При проведении реакции фталевого ангидрида с м-диэтиламинофенолом получают ксантеновое производное – роданин, который служит пищевым красителем.

Промежуточным продуктом в производстве кристаллического фиолетового является кетон Михлера – 4,4΄-бисдиметиламинобензофенон. Это соединение получают из диметиланилина и фосгена:

Модификациями ацилирования являются реакция Неницеску и перегруппировка Фриса. Метод Неницеску – ацилирование фенолов карбоновыми кислотами в присутствии хлорида цинка. Метод Фриса – перегруппировка О-ацильных эфиров фенолов в о- и п-ацилфенолы в присутствии хлорида алюминия, как это отражено на схеме.

Одним из продуктов, производимых промышленностью, является ацетофенон, который используют в качестве растворителя и промежуточного продукта, в частности при производстве фенилэфрина (мезатона). Это соединение является и побочным продуктом при многотоннажном производстве фенола из кумола (см. раздел 2.6).

Бензофенон, как уже отмечалось, получают из бензола и четыреххлористого углерода. Его синтез из бензола и бензоилхлорида или фосгена менее рентабелен. В производстве нейролептиков, таких как трифлуперидол, галоперидол (формула галоперидола приведена на схеме, типичный синтез на примере трифлуперидола приведен в разделе 2.2), трифлуспирилен и др. используют реакцию С-ацилирования. Большая группа нейролептиков является производными бутирофенона. На схеме представлен фрагмент синтеза одного из них – галоперидола:

Ацилирование фторбензола хлорангидридом -хлормасляной кислоты или бутиролактоном дает п-фторфенил--гидрокси(хлор)бутирофенон. Образующийся спирт или галогеналкил в выбранных условиях не алкилирует молекулу фторбензола. Однако при двукратном мольном количестве фторбензола и хлорида алюминия бутирофенон реагирует по кетонной группе, давая производные 4,4-бис-(п-фторфенил)бутиленгликоля, из которых получают препараты пенфлюридол и флуспирилен. Для дальнейшего синтеза галоперидола гидроксигруппу замещают на хлор с помощью тионилхлорида.

Полный синтез и биологическое действие этой группы лекарственных средств приведены в разделе 2.3.

Технологические аспекты проведения процессов ацилирования. Реакцию проводят в среде органического растворителя, которым может быть избыток ArH или другие соединения, не вступающие в реакцию. Аппаратура – эмалированный аппарат, снабженный рубашкой для обогрева паром и охлаждения. Температурный режим обычно 80 – 120 оС, контроль процесса – по скорости выделения HCl. Для выделения продукта реакционную массу, как правило, выливают на подкисленную воду. Хлорид алюминия растворяется в воде, органический слой отделяют на делительной воронке. Отделение от растворителя осуществляют фракционной вакуум-перегонкой либо отгонкой с паром, в зависимости от свойств продукта.