Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
книга БАС.doc
Скачиваний:
203
Добавлен:
21.08.2019
Размер:
4.66 Mб
Скачать

1.4.2. Классификация реакций

В рассмотренных примерах наблюдается гетеролитический тип образования связи. Одна из классификаций реакций основывается на природе реагента – реакции электрофильного и нуклеофильного замещения. По механизму превращения различают также реакции присоединения реагентов к молекуле или отщепления заместителя от молекулы.

Если реагирующие частицы содержат по одному неспаренному электрону, тип образования связи гомолитический (радикальные реакции). В особую группу выделяют перициклические реакции с циклическим переносом электронов, при котором нет заряженных или свободнорадикальных частиц. Примером служит реакция Дильса – Альдера. Различают по механизму также мономолекулярные и бимолекулярные реакции. Если, например, лимитирующей стадией процесса является разрыв связи в субстрате реакции и быстрое взаимодействие образовавшегося иона с другой молекулой, то реакции называют мономолекулярными. Если в лимитирующей стадии процесса участвуют две молекулы – бимолекулярными. По принятой номенклатуре реакции кратко обозначают с помощью букв и цифр, учитывающих тип реакции, реагент и число участвующих молекул. Первая буква – тип реакции: S (substitution) – замещение, A (addition) – присоединение, E (elimination) – отщепление. Вторым подстрочным символом обозначают тип реагента – N (nucleophilic), E (electrophilic), R (radical) – нуклеофильный, электрофильный и радикальный. Третий символ – цифра: 1 – мономолекулярные реакции, 2 – бимолекулярные. Например SN1, SR2, SE2. Специфику реакций ароматических соединений обозначают – Ar. Так реакции электрофильного замещения в ароматическом цикле обозначают SE2Ar или более кратко – SEAr.

Реакции, использующиеся в промышленном органическом синтезе, как правило, хорошо изучены. Это можно продемонстрировать на примере реакций электрофильного замещения в ряду ароматических и гетероароматических соединений SEAr.

1.4.3. Механизм и кинетика реакций

Реакции электрофильного ароматического замещения имеют общий механизм, который можно представить следующей схемой:

-комплекс - аддукт

где реагент Х+ – электрофильная частица, имеющая целочисленный или частично положительный заряд, бензольный цикл является обобщенной формулой ароматического соединения; k1 – константа скорости прямой реакции образования -аддукта, k -1 – обратной реакции, k2 – константа скорости образования целевого продукта, k -2 – обратной реакции, :В – основание, связывающее уходящий протон.

Для понимания закономерностей реакций, а также для организации технологического процесса полезно использовать формальный кинетический анализ. Рассмотрим общее кинетическое уравнение. Скорость реакции – увеличение концентрации конечного продукта во времени, прямо пропорциональна константе скорости реакции – k2, концентрации -аддукта и концентрации агента, связывающего уходящий протон:

V= = k2 [Ar HX+][B] (1.3)

Накопления -аддукта в реакционной массе не наблюдается. Поэтому текущую, стационарную концентрацию этого продукта можно вычислить, приравняв ее приход расходу. Скорость образования промежуточного продукта:

= k1 [ArH] [X+] (1.4);

скорость расхода промежуточного продукта:

= k2[ArHX+][B] + k -1 [ArHX+] (1.5)

k1 [ArH] [X+] = (k2 [B] + k-1) [ArHX+] (1.6)

Из уравнения (1.6) можно вычислить текущую концентрацию -аддукта:

(1.7)

Зная формулу расчета концентрации -аддукта, выраженную через экспериментально определяемые величины, можно рассчитать скорость реакции:

(1.8)

Анализ уравнения (1.8) довольно сложен. Необходимо определить или знать лимитирующую стадию реакции. Во многих случаях (вариант 1) величина k2[B] существенно больше, чем k-1 и этим слагаемым можно пренебречь. Уравнение существенно упрощается:

V = k1[ArH][X+] (1.9)

Поэтому главными являются константа скорости реакции образования -аддукта и концентрация электрофильной частицы. Энергетическая диаграмма реакции, графически отображающая этот вариант, приведена в начале раздела.

Во втором случае лимитирующей стадией процесса является отрыв протона. Тогда k-1 >> k2[B] и последним слагаемым знаменателя можно пренебречь. Кинетическое уравнение имеет следующий вид:

(1.10)

В энергетической диаграмме реакции этого случая барьер отщепления протона выше, чем барьер образования -аддукта.

Отнесение процесса к первому или второму варианту может быть осуществлено с помощью измерения кинетического изотопного эффекта. Кинетическим изотопным эффектом (КИЭ) называют отношение константы скорости реакции частицы, содержащей легкий изотоп, к константе скорости реакции частицы, содержащей тяжелый изотоп. Величина КИЭ определяется тем, что прочность связи между атомами зависит от массы соответствующего атома. В органическом синтезе обычно имеют дело с отщеплением изотопов атома водорода – протоном и дейтероном. Энергия разрыва связи C-D выше энергии разрыва связи C-H, поэтому дейтерозамещенные соединения реагируют медленнее. При соотношении kH/kD большем единицы, т. е. когда наблюдается положительный КИЭ, стадия отрыва протона является лимитирующей. Если кинетический изотопный эффект отсутствует, то лимитирующей стадией процесса служит образование -аддукта.

Влияние заместителей может быть оценено с помощью уравнений Гаммета и Тафта.