
- •Глава 2. Методы 95
- •2 Мотрошилова н.В. Рождение и развитие философских идей. М., 1991. С. 5-6.
- •0.4. Наука как система знания
- •1 Киссирер э. Жизнь и учение Канта. СПб., 1997. С. 183. 1 Quine w. Van о. Word and Object. New York, London, i960. P. 9-13.
- •1 Поппер к Логика и рост научного знания. М.. 1983 с. 341.
- •1 ЛейбницГв. Сочинения: в 4-х т. Т, 3. М., 1982. С, 120.
- •1 Мостепаненко м.В, Философия и методы научного познания. Л., 1972, с. 65-66,71. 1 Чудиное э.М. Природа научной истины. М„ 1977. С. 26.
- •1 Кант и. Критика чистого разума: Соч. В 6 т. Т. 3. С. 159—160. М., 1964. ' Поппер к. Логика и рост научного знания. С. 341-342.
- •1 Зиновьев л.Л. Логика науки. М„ 1971, с. 251.
- •Раздел I
- •Глава 1. Основные структуры научного знания
- •1 Кассырер э. Познание и действительность. СПб., 1912. С, 42-93.
- •1 Рушнин г.И. Методы научного познания. М._ 1974. С. І 68-171.
- •1 Потер к. Логика и рост научного знания. М , 1983. С. 328- ГудменН. Способы создания миров, м„ 2001, с. 14-36,
- •1 Никитин е.П. Объяснение — функция науки. М„ 1970.
- •1 Штофф в.А. Проблемы методологии научного познания. M.. 197s. С. 254.
- •1 Гелтеяь к. Логика объяснения. М., 1998. С. 20.
- •1 Карнап р. Философские основания физики, м.. 1971. С. 259-261.
- •1 Гемпель к. Логика объяснения. М., 1998. С, 155,
- •2 Карнап р. Философские основания физики, м, 1971. С. 333-335.
- •1 Сгпепин вс. Теоретическое знание. М., 2000. С. 5
- •Глава 2. Методы
- •1 Стенин вс, Елсукое а.И. Методы научного познания. Минек. 1974. С. 54,
- •1 Степи» b.C. Теоретическое знание. М, 2000, с 244,
- •3 Степан b.C. Научные революции как «точки» бифуркации в развитии знания Научные революции в динамике культуры. Минск, 1487. С. 42.
- •1 А. Кайре. От мира «приблизительности» к универсуму прецизионности: Очерки истории философской мысли. М.. 19к5.
- •1 Гейзенберг в. Физика и философия. Часть и целое, м., 198°.
- •1 Лауэ ш История физики. М., 1956, с. 188.
- •1 Роговин ш.С. Метод наблюдения и деятельность наблюдатели //Вопросы философии, !988, №7. С. 96-97.
- •1 Роговин м.С. Метод наблюдения и деятельность наблюдателя// Вопросы философит 1988. №7. С. 100. Хакинг я. Представление и вмешательство. С, 197-219.
- •1 Готтсданкер р. Основы психологического эксперимента. М., 1982. С. 51-60
- •1 Нашмов в.В. Планирование эксперимента. М., 1972.
- •1 Поппер к. Логика и рост научного знания. С. 143.
- •1 Штофф в.А. Моделирование и философия. М.; л„ 1966. С, 19.
- •Объект-оригинал (знание до процесса исследования)
- •1 Штофф в.А. Проблемы методологии научного познания. М., 1978. С, 117.
- •1 Бикел п.. Доксам к Математическая статистика. М, 1983 с. 68,
- •1 Субботин л.Д. Идеализация как средство научного познания II Проблемы логики научного познания. М, 1964
- •5 Лебедев с.А. Индукция как меч од научного познания м.. 1980. С, 145-147.
- •1 Щтофф б.А. Проблемы методологии научного познания. С. 181. ' УемовА.И. Аналогия в практике научного познания. М., 1970.
- •1 Маркс к., ЭнгельсФ. Сочинения: 2-е им. Т. П. С. 180
- •Глава 3. Формы научного познания как единицы логико-методологического анализа
- •1 Декарт!'. Сочинения: в 2 т. Т. 1.М., с. 126-132.
- •1 Л. Лаудин. Наука и ценности // Современная философия науки. М., 1996, с. 329-332.
- •1 ХолтонДж. Тематический анализ науки. С. 311.
- •I Бикел п., Доксам к. Математическая статистика. С. 182.
- •Глава 4. Проблемы динамики научного познания
- •1 См.: БунгеМ. Философия физики. С. 286-287, 299-303. 9 - 1410 Ушаков
- •1 Кун т. Структура научных революций. М., 1977. С 232.
- •1 Кун т. Структура научных революций. М., 1977. Указ, соч. С. 63.
- •2 Кант и. Критика чистого разума: Сочинения в 6 т. Т. Ї. С. 218-21,
- •1 Рорти р. Философия и зеркало природы. Новосибирск, 1997. С, 233-234.
- •1 Бунге м. Философия физики. М., 1975. С. 270.
- •1 Куапн называет также среди принципов, которые руководят ученым, принципы простоты и достаточного основания. Quint' w. Van о Word and Ubjeel. P. 19-21.
- •1 ГодфручЖ. Что такое психология. Т. 1. VI., 1992. С, 157. Simon и. Models of Discovery. Dordrecht-Holland: Reidel, 1977.
- •Глава 5. Проблемы гуманитарных наук
- •1 Рикср п. Герменевтика. Этика. Политика. М., 1995. С.')
- •1 Üempel с к.. Oppenheim!'. PerTypus4iegrili im Lichte der neuen Logik. Uiden, 1936. : Го/kKnii j.I.H. Понятие о реальных и идеальных типах // Вопросы философии. 1986. № 10. С 25-34.
- •Раздел II
- •Глава 7. Наука как социальный институт
- •1 Маяяинз и. Модель развития теоретических [рупії и социологии а' Научная деятельность: Структуры и институты. М.Іу80. С. 251-2&2.
- •1 Прайс дДж. Не Тенденции в развитии научной коммуникации — прошлое, настоящее, будущее/.' Коммун и кашгя в современной науке. М„ [976. С. 93-ш9.
- •1 Кроул д.Чс р. Схемы интеллектуального влияния в научных исследованиях // Коммуникация в современной науке. М.. 1976. С. 390 425.
- •1 ЛаузИ. История физики. М., 1956. С. 167 1ля
- •1 Малкей м, Наука и социология знания. С. 196.
- •Глава 8. История науки
- •Глава 9. Взаимосвязь науки и культуры
- •1 Мамчур е.Л. Проблемы социокультурной детерминации научного знания. М., I 987. С. 40-44; Романовская т.Е. Наука х1х-хх веков в контексте истории культуры. М., 1995.
- •1 Дирак п. Электроны и вакуум. М„ 1957. С. 4-5.
- •1 Зеньковский в.В. Проблемы воспитания в свете христианской антропологии. М., 1993. С. 186-187,
- •Вводный раздел
- •Раздел 1. Логико-методологические аспекты науки Глава 1. Основные структуры научного знания
- •Глава 3. Формы научного познания
- •Глава 4. Проблемы динамики научного познания
- •Глава 5. Проблемы гуманитарных наук
- •Раздел 2. Социально-культурные аспекты науки
- •Глава 6. Наука, общество, цивилизация
- •Глава 7. Наука как социальный институт
- •Глава 8. История науки
- •Глава 9. Взаимосвязь науки и культуры
- •1 Валери п. Об искусстве. M, s976, с. 64-65,
- •1 Валери п. Об искусстве. M, s976, с. 64-65,
1 Готтсданкер р. Основы психологического эксперимента. М., 1982. С. 51-60
Чем больше соответствует реально проводимый эксперимент по своим условиям идеальному эксперименту, т.е. чем он больше похож на идеальную схему, тем он лучше с точки зрения его научной значимости. Для оценки этого качества эксперимента используют термин валидность (лат. гаИйш — «сильный, действенный, годный»). Валидность — это в некотором смысле степень совершенства эксперимента.
Для более детальной оценки предлагают (Р. Готтсданкер, Д. Кэмпбелл и др.) различать валидность внутреннюю и внешнюю. Внутренняя валидность оценивает само планирование эксперимента, его организацию, его внутреннюю логику. Если мы достаточно надежно устранили побочные влияния, почти как в идеальном эксперименте, то эксперимент обладает внутренней валидностью. В противном случае его можно назвать неудачным. Если результаты, полученные в эксперименте, идеально экстраполируемы на изучаемую предметную область, т.е. на класс реальных ситуаций, то эксперимент обладает внешней валидностью. В противном случае его можно назвать неадекватным. Таким образом, эксперимент должен быть и удачно спланирован, и экстраполируем по получаемым в нем результатам. Примером эксперимента с недостаточной внутренней валидностью может служить приведенный выше пример физиологического эксперимента, где не были учтены побочные факторы (возрастание углекислоты в воздухе лаборатории). Иллюстрацией темы внешней валидно-сти эксперимента является типичная проблема экспериментальной биологии — расхождение между результатами, полученными в искусственных условиях (in vitro), и ожидаемыми результатами в естественных условиях (in vivo), когда встает задача экстраполируемости лабораторных данных на естественные ситуации.
Существенная и весьма трудоемкая часть работы экспериментатора как раз и состоит в создании условий, приближающих данную исследовательскую ситуацию к схеме идеального эксперимента. Для этого он проводит нейтрализацию побочных факторов, добивается стабильного воспроизведения данного эффекта и поддержания его, обеспечивает условия достоверности фиксируемого эффекта (т.н. контроль эксперимента — использование отдельной совокупности объектов как контрольной системы, служащей для сравнения с непосредственно изучаемой системой), решает вопросы применимости полученных результатов к классу естественных ситуаций.
Кроме того, выделив искомую зависимость, убедившись в ее постоянстве и воспроизводимости, экспериментатор исследует также ее характер (выражается ли она какой-либо математической функцией, представляет ли она собой какую-то степень корреляции, объясняется ли она какими-либо причинно-следственными связями и т.п.).
Классификацияэкспериментов
Назовем некоторые основания классификации. К разновидностям экспериментов относят:
-
по условиям проведения — естественные и искусственные;
-
по целям исследования — преобразующие, контролирующие, констатирующие, поисковые и др.;
5-1410 Ушаков
-
по количеству факторов — однофакторные и многофакторные;
-
по степени контролируемости факторов — активные и пассивные (регистрирующие) .
Рассмотрим некоторые виды экспериментов подробнее.
По условиям проведения. Так называемый естественный эксперимент предполагает изучение объекта в реальных условиях его существования; чаще всего такой вид эксперимента применяется в биологических и гуманитарных науках. Искусственный же эксперимент требует для своего проведения специально создаваемой обстановки. Чаще используется в науках о неживой природе. Его называют также лабораторным экспериментом.
Искусственный эксперимент имеет такие достоинства, как возможность обеспечить достаточные условия для устранения побочных факторов, т.е. для достижения высокой внутренней валидности, причем с эффективным использованием времени и ресурсов. Однако часто перед ним встает проблема внешней валидности, или экстраполируемости полученных результатов.
Естественный же эксперимент, наоборот, уступая лабораторному в возможности создания удобных для исследователя условий, демонстрирует приближенный к реальности ход изучаемых процессов. Часто он используется в технических науках для испытания изготовленных объектов, в этом случае его называют натурным. В зависимости от условий непосредственного проведения естественный эксперимент может быть полевым, полигонным, производственным, клиническим и т.п. Главная задача в естественном эксперименте — обеспечить максимальную непринужденность, натуральность окружающей обстановки. В эту задачу, как правило, входят
изучение параметров воздействия среды на данный объект, особенностей
поведения или функционирования данного объекта и их оценка.
2. По целям исследования. Эксперимент преобразующий, предполагает активное изменение структуры и функций изучаемого объекта, преднамеренное создание условий, которые должны способствовать появлению его новых качеств.
Контролирующий эксперимент решает задачу обеспечения контроля
над изучаемым объектом, управления объектом с помощью воздействующих факторов с одновременным изучением изменений его состояния в зависимости от воздействия.
Констатирующий эксперимент представляет собой процедуру проверки какого-либо исходного предположения; целью данного эксперимента является фиксация наличия или отсутствия определенных свойств, отношений, эффектов, состояний и т.п.
Поисковый эксперимент не имеет всецело систематического характера; часто он является лишь начальной стадией в серии экспериментальных исследований. Проводится в тех ситуациях, когда недостаточно известен комплекс факторов, влияющих на изучаемый объект. Поэтому такой эксперимент носит разведывательный, предварительный характер. Именно для него в большой степени характерно то, что мы говорили выше об экспериментировании как поисковой активности. Поисковый эксперимент занимает достаточно видное место в научном познании, хотя его роль иногда недооценивается методологами из-за влиятельной роли теории в современной эмпирической науке, что будет рассмотрено несколько ниже.
Важным видом эксперимента является также т.н. решающий эксперимент. Для его проведения характерна ситуация, когда две или несколько гипотез конкурируют друг с другом, претендуя на роль ведущей и примерно одинаково согласуясь с имеющимся эмпирическим базисом. В этом случае решающим экспериментом становится такой, результаты которого однозначно свидетельствуют в пользу одной теоретической системы и опровергают альтернативную ей систему. Для этого, конечно, сам эксперимент
должен быть спланирован так, чтобы основной вопрос, решаемый в ходе экспериментального исследования, был сформулирован дихотомически, т.е.
чтобы он допускал только два возможных ответа: «да» или «нет». Примерами решающих экспериментов могут служить: знаменитый «маятник Фуко», благодаря которому Ж.Б.Л. Фуко продемонстрировал вращение Земли (1851 г.), доказав справедливость теории Коперника и опровергнув теорию Птолемея; опыт О.Ж. Френеля с открытием белого пятна в тени диска,
благодаря которому была открыта дифракция света и поддержана волновая
теория света в противовес корпускулярной.
Однако следует заметить, что вопрос о действительной роли решающих экспериментов в развитии научного знания весьма непрост. Например, далеко не всегда решающий эксперимент расценивается современниками как именно решающий; часто это удается понять лишь намного позже. В последующих разделах мы еще вернемся к этой теме.
3. По количеству факторов — (подробно см. ниже).
4. По степени контролируемости факторов. Эксперимент активный предполагает возможность существенного управления независимыми переменными. Экспериментатор контролирует «вход» и «выход» иссле- дуемой системы. Но не всегда независимая переменная хорошо контроли- руема. Иногда мы можем лишь констатировать, что она изменяется, не будучи в состоянии целенаправленно воздействовать на нее. В этом слу- чае имеет место ситуация пассивного, или регистрирующего, эксперимен- та. Здесь экспериментатор наблюдает за поведением зависимой перемен- ной, стараясь извлечь максимум информации об изучаемых взаимосвязях. Примером может служить изучение шокового процесса в патологической
физиологии, когда у лабораторного животного он вызывается искусственно; исследователь следит за функционированием биохимических систем организма в зависимости от стадии шока, не предпринимая активного вмешательства. В экспериментах подобного типа вообще велик
удельный вес входящего в них наблюдения.
Самостоятельным вариантом регистрирующего эксперимента является корреляционное исследование. Некоторые методологи считают его отдельным научным методом, но по своей логической схеме он является частным случаем именно пассивного, регистрирующего эксперимента. Корреляционные исследования часты в гуманитарных науках, где возможность активного вмешательства в изучаемые процессы весьма ограниченна. Например, исследователь выдвигает гипотезу, что дети из многодетных семей быстрее развиваются и демонстрируют большую успеваемость в школе, чем те дети, которые являются в своих семьях единственными. Как можно проверить эту гипотезу? Исследователь не может здесь предпринять какие-либо активные действия, чтобы вызвать и проверить искомые различия, однако у него есть возможность изучить зависимость между уже существующими различиями: для этого он ищет и изучает статистические данные, сопоставляя их между собой. Таким образом, в отличие от активного эксперимента, где осуществляются контролируемые воздействия, в корреляционном анализе проверяются гипотезы о взаимосвязи уже имеющихся данных, проводится ретроспективное изучение уже произошедших событий. Здесь ученый работает с наличными массивами данных, применяет статистические методы их обработки для выделения возможных детерминант определяемых различий. Корреляционное исследование относится к квазиэкспериментальному подходу, о котором мы говорили в предыдущем параграфе: оно сочетает в себе черты и эксперимента, и наблюдения.
Помимо перечисленных, в методологии науки называют и другие виды экспериментов. Так, выделяют в качестве особой разновидности математический, или вычислительный, эксперимент: в этом случае на основе
компьютерной обработки введенных данных получают результат в виде математического решения той или иной задачи. Он применяется в экологии, сейсмологии, аэродинамике и других науках. К преимуществам математического эксперимента, способствовавшим его широкому применению в современной науке, относится, помимо высокой точности проводимых
расчетов, то, что в таком исследовании каждый участвующий фактор можно свободно варьировать при отсутствии того риска катастрофических
последствий, который может возникнуть в натурном эксперименте. Математический эксперимент имеет черты, относящиеся к методу моделирования; в § 2.5 мы несколько подробнее поговорим о плюсах и минусах применения имитационных математических моделей.
Еще одним специальным видом экспериментирования, занимающим важное место в научной практике, является мысленный эксперимент. Он применяется учеными как средство расширения доступных им экспериментальных средств. В случае, когда провести реальный эксперимент не представляется возможным, ученый может мысленно воспроизвести и продумать саму экспериментальную ситуацию, получив в ходе этого продумывания важные теоретические результаты. Хрестоматийным примером мысленного эксперимента является мысленное рассмотрение падающего лифта, осуществленное Эйнштейном в ходе разработки теории относительности. Мысленный эксперимент опирается на различные процедуры абстрагирования, идеализации, рассуждений по аналогии. Он сочетает в себе черты как эмпирического, так и теоретического уровней исследования. Как уже говорилось выше (§ 1.4), приемы мысленного экспериментирования, составляющие особый метод конструктивного обоснования абстрактных объектов, играют важнейшую роль в развитии теоретического знания (B.C. Степин).
Многофакторный эксперимент
О многофакторном эксперименте следует поговорить отдельно. Не будет преувеличением то утверждение, что разработка методологии многофакторного эксперимента имела революционное значение в развитии методологии эксперимента и научного познания вообще.
Однофакторный, или классический, эксперимент базировался на том
допущении, что исследователь имеет возможность варьировать факторы, участвующие в исследовательской ситуации, по одному. Из этого следует, что экспериментатор способен выделить изучаемую зависимость в чистом виде, может четко вычленять воздействующие на зависимую переменную факторы (может, скажем, как-то упорядочить их во времени и пространстве, «включать» и «выключать» их по своему усмотрению и т.п.). Однако на самом деле исследовательские ситуации часто оказываются гораздо более сложными.
Выход к более утонченной методологии, имеющей дело с комплексным, принципиально неразделимым действием факторов, был осуществлен прежде всего под влиянием работ английского ученого Рональда Фишера (1890-1962), посвященных агробиологическим экспериментам 1925г. В сложных системах факторы, воздействующие на изучаемый объект, действуют не изолированно и не независимо друг от друга, как это предполагала концепция классического эксперимента, а довольно сложным, взаимосвязанным способом. Они зачастую сцеплены между собой таким образом, что попытка варьировать одну независимую переменную автоматически приводит к некоему замысловатому изменению и других факторов. Это означает, что исследователю приходится иметь дело с особой комплексной организацией этих факторов. Кроме того, исследователя может интересовать действие не изолированных факторов, которое в реальности не встречается, а именно влияние различных возможных комбинаций факторов. Такая постановка вопроса характерна, например, для селекционных исследований. Какой же стратегии следует придерживаться экспериментатору в этом случае?
Идея многофакторного эксперимента (иногда используют упрощенное название факторный эксперимент) состоит в следующем. Исследователь может варьировать независимые переменные как комплекс, т.е. одновременно сразу несколько; после серии экспериментов полученные результаты должны быть подвергнуты специальному статистическому
анализу, где каждый участвующий фактор будет оценен по результатам
всех опытов данной серии. Используя соответствующие схемы и обрабатывая данные по особым статистическим методикам, позволяющим изучать эффективность совместного полифакторного воздействия (методики
дисперсионного анализа), исследователь получает картину, отражающую вклад каждого фактора в изменяющихся условиях. В итоге экспериментатор имеет возможность изучать самые сложные комбинации факторов. Причем это осуществляется достаточно экономичным способом, т.к. информативность экспериментов зависит в данном случае не от их количества в серии, а от концептуальной организации исследований.
Многофакторный эксперимент — мощное средство современной науки. К его достоинствам относятся: эффективность использования времени и средств (ведь проведение ряда экспериментов с отдельными, пофак-
торными модификациями требует значительных затрат), что выражается
прежде всего в сокращении числа опытов, необходимых для решения исследовательской задачи; значительная информативность эксперимента
(т.к. получаемый результат показывает удельный вес каждого фактора в их совокупном действии); высокая степень достоверности данных (в то время как при попытке использовать методологию классического эксперимента результаты могут оказаться неудовлетворительными из-за воздействий неподконтрольных факторов).
Многофакторный эксперимент не просто работает с большим по сравнению с классическим количеством факторов, многофакторный эксперимент представляет собой качественно иной, более эффективный уровень
методологического мышления.
Этапы экспериментального исследования
Экспериментальное исследование является в развитых дисциплинах обычно достаточно длительным процессом, в котором можно выделить несколько этапов.
1. Разработка программы эксперимента. Разумеется, экспериментальное исследование должно выполняться только тогда, когда в этом есть необходимость, т.е. существует научная задача (или совокупность задач), решение которой может быть получено именно экспериментальным методом. Поэтому на начальном этапе исследователь должен осознать и четко сформулировать свою задачу. Как правило, это происходит в виде выдвижения рабочей гипотезы, после чего исследователь, ориентируясь на имеющиеся знания и материально-технические возможности, разрабатывает адекватную этой гипотезе программу эксперимента (экспериментов); в ходе экспериментов должны быть получены данные, подкрепляющие исходную гипотезу либо опровергающие ее.
Круг работ, принадлежащих к этой стадии, достаточно обширен. Исследователю необходимо продумать цель, смысл, структуру экспериментов, условия их проведения, подобрать адекватный объект исследования,
учитывая и этическую сторону (в медико-биологических и гуманитарных науках), необходимые приборы и материалы. Особое значение имеет разработка адекватной методики. Методика исследования — это упорядоченная совокупность предписаний, необходимая и достаточная для достижения цели исследования. Итогом подготовительной деятельности экспериментатора должна явиться программа эксперимента, в которой указаны все компоненты, требующиеся для проведения экспериментального исследования, описаны объем экспериментальных работ, материально-техническое обеспечение, детально изложена методика, а также рассчитаны сроки выполнения. Важнейшим методологическим требованием к плану эксперимента является его реализуемость. Это означает, что количество задач не должно быть слишком большим; проект должен обладать прозрачной логической структурой, отличаться максимальной простотой, наглядностью, удобством в применении. На стадии разработки программы нет мелочей, все должно быть тщательно продумано и упорядочено.
План эксперимента — это определенная логическая схема, выбранная
для достижения исследовательских целей. В англоязычной литературе