
- •С.В Демисенова, л.П.Шебанова, з.И.Янсуфина
- •Предисловие
- •Раздел I
- •Фрагмент рабочей программы дисциплины
- •«Методика обучения и воспитания (математика)»
- •Пояснительная записка
- •Основные цели и задачи
- •Требования к подготовке студентов
- •Тематическое планирование
- •Раздел II содержание семинарских и практических занятий
- •5 Семестр
- •Темы семинарских занятий
- •Примерная структура семинарских занятий
- •Указания к выполнению учебных заданий
- •Содержание занятий
- •Тема 1. Цели обучения математике в школе. Анализ программ и учебников по математике 5-9 классов
- •Индивидуальное задание
- •Справочный материал
- •Требования к методическому построению учебника
- •Тема 2. Планирование работы учителя математики
- •Индивидуальное задание
- •Справочный материал
- •Тема 3. Урок математики
- •Вопросы для обсуждения
- •Ход урока
- •Справочный материал
- •1. Основные методические требования к уроку математики
- •2. Основные типы уроков
- •Ход урока
- •Тема 4. Наглядность при обучении математике в школе
- •Вопросы для обсуждения
- •Групповое задание
- •Индивидуальное задание Составить справочную и рабочую таблицы по решению задачи по темам группового задания. Справочный материал
- •Тема 5. Самостоятельная работа учащихся по математике
- •Общие задания
- •Групповое задание
- •Справочный материал
- •Тема 6. Формы и методы проверки знаний, умений и навыков учащихся по математике
- •Вопросы для обсуждения
- •Индивидуальное задание
- •Справочный материал
- •Анализ ошибок
- •Математический диктант
- •Тема 7. Методика формирования математических понятий
- •Справочный материал
- •Тема 8. Математические предложения и методика их изучения. Методика работы над теоремой
- •Индивидуальное задание
- •Справочный материал
- •Тема 9. Задачи в обучении математике. Методика работы с сюжетной задачей в школе
- •Общее задание
- •Справочный материал
- •Общий прием решения математической задачи
- •Арифметические задачи
- •Прием поиска решения текстовой арифметической задачи (с сюжетом)
- •Прием решения текстовой арифметической задачи
- •Методика обучения учащихся решению арифметической задачи
- •Решение задачи алгебраическим методом
- •6 Семестр Темы семинарских занятий
- •7 Семестр
- •Примерная структура занятий
- •Виды учебных заданий
- •Указания к выполнению учебных заданий
- •7 Семестр
- •Указания к выполнению общих заданий
- •Типичные методические ошибки при изучении понятий
- •Типичные методические ошибки при изучении правил, свойств (теорем)
- •Общий прием решения математической задачи
- •Указания к выполнению групповых заданий
- •Указания к выполнению индивидуальных заданий
- •Примеры выполнения учебных заданий
- •Примеры выполнения общих заданий Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Задание 5 Методика введения понятия «четырехугольник»
- •Задание 6
- •Задание 7
- •Задание 8
- •Задание 9
- •Задание 9
- •Примеры выполнения групповых заданий Задание 2
- •Задание 3
- •Задание 4
- •Ход урока
- •Задание 5
- •8 Семестр темы семинарских занятий
- •Виды общих заданий
- •Виды индивидуальных заданий
- •Темы для выполнения индивидуальных заданий
- •Указания к выполнению учебных заданий
- •Примеры выполнения общих заданий Задание 1
- •I уровень
- •Задание 2
- •I уровень
- •II уровень
- •III уровень
- •Задание 3
- •III уровень
- •III уровень
- •Задание 4
- •Примеры выполнения индивидуальных учебных заданий Задание 1
- •II уровень
- •Задание 2
- •Задание 3
- •1 Уровень
- •Параллельность прямых и плоскостей в пространстве
- •2 Уровень
- •3 Уровень
- •Задание 4
- •Задание 5
- •Задание 6
- •III уровень
- •Задание 7
- •II уровень
- •Отчетная таблица
- •Задание 8
- •Часть 1.
- •Часть 2
- •Инструкция по выполнению работы
- •Задание 11
- •II уровень
- •Задание 12
- •III уровень
- •Раздел III виды и содержание контроля
- •Примерные задания для аудиторной контрольной работы
- •Тест по теме «Геометрические фигуры, их свойства и методика изучения»
- •Домашняя контрольная работа
- •Вопросы к зачету
- •Вопросы к экзамену
- •Раздел IV список рекомендуемой литературы
- •5 Семестр
- •Тема 1. Анализ программ и учебников по математике 5-9 классов
- •Тема 2. Планирование работы учителя математики
- •Тема 3. Урок математики
- •Тема 4. Наглядность при обучении математике в школе
- •Статьи из журнала «Математика в школе» и газеты «Математика»:
- •Тема 5. Самостоятельная работа учащихся по математике
- •Тема 6. Формы и методы проверки знаний, умений и навыков учащихся по математике
- •Тема 7. Элементы логики. Методика формирования математических понятий
- •Тема 8. Математические предложения и методика их изучения. Методика работы над теоремой
- •Тема 9. Задачи в обучении математике. Методика работы с сюжетной задачей в школе
- •Тема 10. Математическое моделирование. Применение основных методов в обучении математике
- •Тема 11. Технологический подход к построению обучения математике. Использование опыта учителей-новаторов в обучении математике
- •6 Семестр
- •Тема 1: Числовые системы и методика изучения числовых множеств
- •Тема 2: Тождественные преобразования выражений и методика их изучения в школьном курсе
- •Тема 3: Уравнения, неравенства и их системы и методика изучения их в основной школе
- •Тема 4: Функции, их графики и методика изучения функций в основной школе
- •Тема 5: Вероятностно-статистическая линия в школьном курсе математики
- •7 Семестр
- •Тема 1: Пропедевтический курс геометрии и методика его изучения
- •Тема 2: Геометрические фигуры, их свойства и методика изучения
- •Тема 3: Геометрические построения на плоскости и методика их изучения
- •Тема 4: Геометрические величины, метод площадей и методика их изучения
- •Тема 5. Геометрические преобразования, метод геометрических преобразований и методика их изучения
- •Тема 6: Координаты, координатный метод и методика их изучения
- •Тема 7: Векторы и векторный метод в школьном курсе геометрии и методика их изучения
- •8 Семестр
- •Тема 3. Многогранники и методика их изучения
- •Тема 4. Тела вращения и методика их изучения
- •Тема 5. Геометрические построения в пространстве и методика их изучения
- •Тема 6. Геометрические величины: площади поверхностей и объемы тел; методика их изучения
- •Тема 7: Координаты, преобразования и векторы в пространстве и методика их изучения
- •Тема 1: Тригонометрические функции, уравнения и неравенства
- •Тема 2. Степенная, показательная и логарифмическая функции; показательные и логарифмические уравнения и неравенства
- •Тема 3. Производная и её применение
- •Тема 4. Первообразная и интеграл, применение интеграла
- •Рекомендуемая литература Основная литература
- •Содержание
- •Учебное пособие
III уровень
Комбинации пространственных тел. Вписанные и описанные шары
При решении задач на комбинацию геометрических фигур ввиду сложности выполнения чертежей часто приходится прибегать к их упрощению. В одних случаях оказывается достаточным иметь лишь изображение сечения фигур, участвующих в комбинации (таково большинство задач на комбинацию круглых тел), в других – изображение лишь одной из комбинируемых фигур; иногда одну из фигур бывает необходимо изобразить полностью, а другую лишь частично.
В данной теме решаются, в основном задачи на вычисление; методы решения: арифметический, алгебраический.
Решить математическую задачу, используя общий прием решения
III уровень
Задача. Найти область определения функции, заданной формулой:
lg(х2
- 9).
Изучить содержание задачи. Данная функция задана формулой, представляющей сумму двух выражений: иррационального и логарифмического. Подкоренное выражение представлено алгебраической дробью, содержащую переменную в знаменателе.
2) Поиск решения. Область определения функции можно найти как пересечение области определения первого и второго выражений. В область определения этой функции входят те значения х, при которых знаменатель подкоренного выражения и выражение под знаком логарифма положительны.
3) Решение задачи. Составим и решим систему неравенств:
или
4) Ответ:
(-;
-3)
(3;
+
).
5) Анализ и обобщение решения задачи. Задача решена на основе общего приема нахождения области определения функции и приема решения системы неравенств.
Задание 4
Типичные ошибки учащихся при изучении стереометрии
1) Ошибки при выполнении стереометрического чертежа: при изображении углов между прямыми и плоскостями, между плоскостями, при изображении многогранников, особенно высоты пирамиды или наклонной призмы, центров сферы и шара и т.п.
2) Логические ошибки: при определении понятий, ошибки в доказательствах, в выводах формул.
3) Ошибки при решении задач: путают свойства прямого и прямоугольного параллелепипеда, неправильно указывают диагональные сечения и т.п.
Коррекция:
Эффективным средством профилактики затруднений учащихся при решении задач, в частности, построения чертежа, являются специальные учебные (подготовительные) задачи.
Задача: В основании призмы АВСА1В1С1 лежит правильный треугольник. Ее вершина А1 одинаково удалена от вершин А, В, С, а ее высота равна стороне основания. Считая сторону основания равной а, найдем S бок. – площадь боковой поверхности призмы.
Учебные задачи:
1) Изобразить призму, в основании которой лежит правильный треугольник;
2) Является ли данная призма правильной? Почему?
3) Какое условие необходимо, чтобы призма была правильной; сформулируйте определение правильной треугольной призмы;
4) Дан правильный треугольник. Постройте какую-либо точку, одинаково удаленную от вершин этого треугольника а) на плоскости; б) в пространстве.
Примеры выполнения индивидуальных учебных заданий Задание 1
Таблица 13
Тематический план для образовательных классов (фрагмент)
Тема «Многогранники» (18 ч.)