
- •Электронное оглавление
- •Капсулы (вставки)
- •ПРЕДИСЛОВИЕ
- •Часть I. ФИЗИЧЕСКИЕ ОСНОВЫ СТРОЕНИЯ МАТЕРИАЛЬНОГО МИРА
- •Глава 1. ОБЩИЕ ПРЕДСТАВЛЕНИЯ ОБ ЕСТЕСТВОЗНАНИИ
- •Владимир Иванович Вернадский
- •1.1. Этапы развития и становления естествознания
- •1.1.1. Программа Платона
- •1.1.2. Представления Аристотеля
- •1.1.3. Модель Демокрита
- •1.2. Проблемы естествознания на пути познания мира
- •1.2.1. Физический рационализм
- •1.2.2. Методы познания
- •Эрнест Резерфорд
- •1.2.3. Целостное восприятие мира
- •1.2.4. Физика и восточный мистицизм
- •1.2.5. Взаимосвязь естественных и гуманитарных наук
- •Вернер Гейзенберг
- •1.2.6. Синергетическая парадигма
- •1.2.7. Универсальный принцип естествознания — принцип дополнительности Бора
- •Нильс Бор
- •КОНТРОЛЬНЫЕ ВОПРОСЫ
- •ЛИТЕРАТУРА
- •Глава 2. МЕХАНИКА ДИСКРЕТНЫХ ОБЪЕКТОВ
- •2.1. Трехмерность пространства
- •2.2. Пространство и время
- •Исаак Ньютон
- •Рис. 2.1. Изображение мировой линии в пространственно-временной системе отсчета
- •2.3. Особенности механики Ньютона
- •2.4. Движение в механике
- •2.5. Законы Ньютона — Галилея
- •2.6. Законы сохранения
- •2.7. Принципы оптимальности
- •2.8. Механическая картина мира
- •КОНТРОЛЬНЫЕ ВОПРОСЫ
- •ЛИТЕРАТУРА
- •Глава 3. ФИЗИКА ПОЛЕЙ
- •3.1. Определение понятия поля
- •Рис. 3.1. Модель силовых линий поля.
- •3.2. Законы Фарадея — Максвелла для электромагнетизма
- •3.3. Электромагнитное поле
- •3.4. Гравитационное поле
- •3.5. Электромагнитная картина мира
- •КОНТРОЛЬНЫЕ ВОПРОСЫ
- •ЛИТЕРАТУРА
- •Глава 4. ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ ЭЙНШТЕЙНА — МОСТ МЕЖДУ МЕХАНИКОЙ И ЭЛЕКТРОМАГНЕТИЗМОМ
- •4.1. Физические начала специальной теории относительности (СТО)
- •А. Эйнштейн
- •4.1.1. Постулаты А. Эйнштейна в СТО
- •4.1.2. Принцип относительности Г. Галилея
- •Рис. 4.2. Преобразование Галилея х'= х— vt связывает положение тела Ρ в системах отсчета К и К'.
- •Рис. 4.3. Изменение электромагнитных сил в неподвижной К и подвижной К' системах отсчета.
- •4.1.3. Теория относительности и инвариантность времени
- •4.1.4. Постоянство скорости света
- •Рис. 4.5. «Поезд Эйнштейна»
- •4.1.5. Преобразования Г. Лоренца
- •4.1.6. Изменение длины и длительности времени в СТО
- •Рис. 4.6. Сокращение длины отрезка в направлении перемещения для системы, движущейся со скоростью ν ≈ с.
- •4.1.7. «Парадокс близнецов»
- •4.1.8. Изменение массы в СТО
- •4.2. Общая теория относительности (ОТО)
- •4.2.1. Постулаты ОТО
- •4.2.2. Экспериментальная проверка ОТО
- •Рис. 4.7. Отклонение световых лучей от звезды S при прохождении около Солнца от прямолинейной траектории.
- •4.2.3. Гравитация и искривление пространства
- •Рис. 4.8. Движение субъектов А и В с экватора точно на север по параллельным траекториям.
- •4.2.4. Основные итоги основ теории относительности
- •КОНТРОЛЬНЫЕ ВОПРОСЫ
- •ЛИТЕРАТУРА
- •Глава 5. ОСНОВЫ КВАНТОВОЙ МЕХАНИКИ И КВАНТОВОЙ ЭЛЕКТРОДИНАМИКИ
- •5.1. Описание процессов в микромире
- •Первое.
- •Второе.
- •5.2. Необходимость введения квантовой механики
- •Эрвин Шрёдингер
- •абсолютно черное тело
- •корпускулярно-волновой дуализм
- •Луи де Бройль
- •5.3. Гипотеза Планка
- •Макс Планк
- •5.4. Измерения в квантовой механике
- •5.5. Волновая функция и принцип неопределенности В. Гейзенберга
- •Вольфганг Паули
- •5.6. Квантовая механика и обратимость времени
- •5.7. Квантовая электродинамика
- •КОНТРОЛЬНЫЕ ВОПРОСЫ
- •ЛИТЕРАТУРА
- •Глава 6. ФИЗИКА ВСЕЛЕННОЙ
- •6.1. Космологическая модель А. Эйнштейна — A.A. Фридмана
- •6.2. Другие модели происхождения Вселенной
- •6.2.1. Модель Большого Взрыва
- •Георгий Антонович Гамов
- •6.2.2. Реликтовое излучение
- •6.2.3. Расширяется или сжимается Вселенная?
- •6.2.4. Сценарий развития Вселенной после Большого Взрыва
- •Рис. 6.1. Схема физической истории Вселенной.
- •6.2.5. Модель раздувающейся Вселенной
- •6.3. Современные представления об элементарных частицах как первооснове строения материи Вселенной
- •Поль Дирак
- •6.3.1. Классификация элементарных частиц
- •Рис. 6.2. Схема классификации элементарных частиц.
- •6.3.2. Кварковая модель
- •Таблица 6.1
- •Таблица 6.2
- •Таблица 6.3
- •6.4. Фундаментальные взаимодействия и мировые константы
- •6.4.1. Мировые константы
- •6.4.2. Фундаментальные взаимодействия и их роль в природе
- •6.4.3. Из чего же состоит вещество Вселенной?
- •Рис. 6.3. Возможные формы стабильной материи во Вселенной
- •6.4.4. Черные дыры
- •6.5. Модель единого физического поля и многомерность пространства—времени
- •6.5.1. Возможность многомерности пространства
- •Рис. 6.4. Модель трехмерного частотного пространства (ОД — оптический диапазон, видимая часть спектра, УФ — ультрафиолетовая, ИК — инфракрасная).
- •6.6. Устойчивость Вселенной и антропный принцип
- •6.6.1. Множественность миров
- •Рис. 6.5. Схематическое изображение областей, соответствующих устойчивым областям Вселенной.
- •6.6.2. Иерархичность структуры Вселенной
- •Рис. 6.6. Масштабы Вселенной
- •Рис. 6.7. Масштабы микромира
- •6.7. Антивещество во Вселенной и антигалактики
- •6.8. Механизм образования и эволюции звезд
- •Рис. 6.8. Схематическое изображение протон-протонной цепочки.
- •6.8.2. Углеродо-азотный цикл
- •6.8.3. Эволюция звезд
- •Рис. 6.10. Диаграмма эволюции звезд населения I.
- •6.8.4. Пульсары
- •Рис. 6.11. Модель пульсара, предложенная Голдом.
- •6.8.5. Квазары
- •КОНТРОЛЬНЫЕ ВОПРОСЫ
- •ЛИТЕРАТУРА
- •Глава 7. ПРОБЛЕМА «ПОРЯДОК—БЕСПОРЯДОК» В ПРИРОДЕ И ОБЩЕСТВЕ. СИНЕРГЕТИЧЕСКИЕ ПРЕДСТАВЛЕНИЯ
- •7.1. Неравновесная термодинамика и синергетика
- •7.2. Динамика хаоса и порядка
- •7.3. Модель Э. Лоренца
- •7.4. Диссипативные структуры
- •7.6. Реакции Белоусова — Жаботинского
- •7.7. Динамический хаос
- •7.8. Фазовое пространство
- •7.9. Аттракторы
- •Рис. 7.1. Изображение аттракторов на фазовых диаграммах.
- •Рис. 7.2. Бифуркационная диаграмма (А — характеристика системы, λ — управляющий параметр).
- •7.10. Режим с обострением
- •7.11. Модель Пуанкаре описания изменения состояния системы
- •7.12. Динамические неустойчивости
- •7.13. Изменение энергии при эволюции системы
- •7.14. Гармония хаоса и порядка и «золотое сечение»
- •Леонардо да Винчи
- •7.15. Открытые системы
- •7.16. Принцип производства минимума энтропии
- •КОНТРОЛЬНЫЕ ВОПРОСЫ
- •ЛИТЕРАТУРА
- •Глава 8. СИММЕТРИЯ И АСИММЕТРИЯ В РАЗЛИЧНЫХ ФИЗИЧЕСКИХ ПРОЯВЛЕНИЯХ
- •8.1. Симметрия и законы сохранения
- •8.2. Симметрия—асимметрия
- •8.3. Закон сохранения электрического заряда
- •8.4. Зеркальная симметрия
- •8.5. Другие виды симметрии
- •8.6. Хиральность живой и неживой природы
- •Рис. 8.1. Зеркальная симметрия молекул воды (а) и бутилового спирта (б).
- •8.7. Симметрия и энтропия
- •КОНТРОЛЬНЫЕ ВОПРОСЫ
- •ЛИТЕРАТУРА
- •Глава 9. СОВРЕМЕННАЯ ЕСТЕСТВЕННО-НАУЧНАЯ КАРТИНА МИРА С ПОЗИЦИИ ФИЗИКИ
- •9.1. Классификация механик
- •Рис. 9.1. Куб фундаментальных физических теорий.
- •9.2. Современная физическая картина мира
- •КОНТРОЛЬНЫЕ ВОПРОСЫ
- •ЛИТЕРАТУРА
- •Часть II. ФИЗИКА ЖИВОГО И ЭВОЛЮЦИЯ ПРИРОДЫ И ОБЩЕСТВА
- •Глава 10. ОБЩИЕ ПРОБЛЕМЫ ФИЗИКИ ЖИВОГО
- •Глава 11. ОТ ФИЗИКИ СУЩЕСТВУЮЩЕГО К ФИЗИКЕ ВОЗНИКАЮЩЕГО
- •11.1. Термодинамические особенности развития живых систем
- •11.1.1. Роль энтропии для живых организмов
- •11.1.2. Неустойчивость как фактор развития живого
- •11.2. Энергетический подход к описанию живого
- •11.2.1. Устойчивое неравновесие
- •11.3. Уровни организации живых систем и системный подход к эволюции живого
- •11.3.1. Иерархия уровней организации живого
- •11.3.2. Метод Фибоначчи как фактор гармонической самоорганизации
- •11.3.3. Физический и биологический методы изучения природы живого
- •11.3.4. Антропный принцип в физике живого
- •11.3.5. Физическая эволюция Л. Больцмана и биологическая эволюция Ч. Дарвина
- •11.4. Физическая интерпретация биологических законов
- •11.4.1. Физические модели в биологии
- •11.4.2. Физические факторы развития живого
- •11.5. Пространство и время для живых организмов
- •11.5.1. Связь пространства и энергии для живого
- •11.5.2. Биологическое время живой системы
- •11.5.3. Психологическое время живых организмов
- •11.6. Энтропия и информация в живых системах
- •11.6.1. Ценность информации
- •11.6.2. Кибернетический подход к описанию живого
- •11.6.3. Роль физических законов в понимании живого
- •КОНТРОЛЬНЫЕ ВОПРОСЫ
- •ЛИТЕРАТУРА:
- •Глава 12. ФИЗИЧЕСКИЕ АСПЕКТЫ И ПРИНЦИПЫ БИОЛОГИИ
- •12.1. От атомов к протожизни
- •12.1.1. Гипотезы происхождения жизни
- •12.1.2. Необходимые факторы возникновения жизни
- •12.1.3. Теория абиогенного происхождения жизни А.И. Опарина
- •12.1.4. Гетеротрофы и автотрофы
- •12.2. Химические процессы и молекулярная самоорганизация
- •12.2.1. Химические понятия и определения
- •Рис. 12.1. Схема изменения свободной энергии и химической связи в молекулах живых организмов.
- •12.2.2. Аминокислоты
- •12.2.3. Теория химической эволюции в биогенезе
- •12.2.4. Теория молекулярной самоорганизации М. Эйгена
- •12.2.5. Циклическая организация химических реакций и гиперциклы
- •12.3. Биохимические составляющие живого вещества
- •12.3.1. Молекулы живой природы
- •12.3.2. Мономеры и макромолекулы
- •12.3.3. Белки
- •Рис. 12.2. Структура белка-миоглобина.
- •Рис. 12.3. Структуры 20 аминокислот, встречающихся в белках.
- •12.3.4. Нуклеиновые кислоты
- •Рис. 12.4. Строение нуклеотида — мономера нуклеиновых кислот.
- •Рис. 12.5. Двойная спираль молекулы ДНК.
- •Рис. 12.6. Построение нуклеиновой кислоты из нуклеотидов.
- •12.3.5. Углеводы
- •Рис. 12.7. Структура АТФ.
- •Рис. 12.8. Схема получения свободной энергии с участием АТФ.
- •Рис. 12.9. Схема образования молекулы АТФ.
- •Рис. 12.10. Схема цикла Липмана по участию молекул фосфора в энергетических процессах живого организма.
- •12.3.6. Липиды
- •Рис. 12.11. Структура ненасыщенных (а) и насыщенных (б) жирных кислот.
- •Рис. 12.12. Растворение ионного конца жирной кислоты в воде.
- •Рис. 12.13. Растворение углеводородных цепей мыла в масле.
- •12.3.7. Роль воды для живых организмов
- •12.4. Клетка как элементарная частица молекулярной биологии
- •12.4.1. Строение клетки
- •Рис. 12.14. Строение клетки.
- •12.4.2. Процессы в клетке
- •12.4.3. Клеточные мембраны
- •12.4.4. Фотосинтез
- •12.4.5. Деление клеток и образование организма
- •Рис. 12.15. Клеточный цикл.
- •12.5. Роль асимметрии в возникновении живого
- •12.5.1. Оптическая активность вещества и хиральность
- •12.5.2. Гомохиральность и самоорганизация в живых организмах
- •КОНТРОЛЬНЫЕ ВОПРОСЫ
- •ЛИТЕРАТУРА
- •Глава 13. ФИЗИЧЕСКИЕ ПРИНЦИПЫ ВОСПРОИЗВОДСТВА И РАЗВИТИЯ ЖИВЫХ СИСТЕМ
- •13.1. Информационные молекулы наследственности
- •13.1.1. Генетический код
- •13.1.2. Гены и квантовый мир
- •Иерархия и сопоставление элементов в физическом и генетическом атомизме
- •13.2. Воспроизводство и наследование признаков
- •13.2.1. Генотип и фенотип
- •Геном
- •Генофонд
- •13.2.2. Законы генетики Г. Менделя
- •13.2.3. Хромосомная теория наследственности
- •13.3. Процессы мутагенеза и передача наследственной информации
- •13.3.1. Мутации и радиационный мутагенез
- •Николай Владимирович Тимофеев-Ресовский
- •13.3.2. Мутации и развитие организма
- •13.4. Матричный принцип синтеза информационных макромолекул и молекулярная генетика
- •13.4.1. Передача наследственной информации через репликации
- •Рис. 13.1. Репликация ДНК.
- •13.4.2. Матричный синтез путем конвариантной редупликации
- •13.4.3. Транскрипция
- •13.4.4. Трансляция
- •Рис. 13.2. Схема биосинтеза белков.
- •Рис. 13.3. Основные этапы процесса передачи генетической информации.
- •13.4.5. Отличия белков и нуклеиновых кислот
- •13.4.6. Новый механизм передачи наследственной информации и прионные болезни
- •КОНТРОЛЬНЫЕ ВОПРОСЫ
- •ЛИТЕРАТУРА
- •Глава 14. ФИЗИЧЕСКОЕ ПОНИМАНИЕ ЭВОЛЮЦИОННОГО И ИНДИВИДУАЛЬНОГО РАЗВИТИЯ ОРГАНИЗМОВ
- •14.1. Онтогенез и филогенез. Онтогенетический и популяционный уровни организации жизни
- •14.1.1. Закон Геккеля для онтогенеза и филогенеза
- •14.1.2. Онтогенетический уровень жизни
- •14.1.3. Популяции и популяционно-видовой уровень живого
- •14.2. Физическое представление эволюции
- •14.2.1. Синтетическая теория эволюции
- •14.2.2. Эволюция популяций
- •14.2.3. Элементарные факторы эволюции
- •14.2.4. Живой организм в индивидуальном и историческом развитии
- •14.2.5. Геологическая эволюция и общая схема эволюции Земли по H.H. Моисееву
- •14.3. Аксиомы биологии
- •14.3.1. Первая аксиома
- •14.3.2. Вторая аксиома
- •14.3.3. Третья аксиома
- •14.3.4. Четвертая аксиома
- •14.3.5. Физические представления аксиом биологии
- •14.4. Признаки живого и определения жизни
- •14.4.1. Совокупность признаков живого
- •14.4.2. Определения жизни
- •14.5. Физическая модель демографического развития СП. Капицы
- •КОНТРОЛЬНЫЕ ВОПРОСЫ
- •ЛИТЕРАТУРА
- •Глава 15. ФИЗИЧЕСКИЕ И ИНФОРМАЦИОННЫЕ ПОЛЯ БИОЛОГИЧЕСКИХ СТРУКТУР
- •15.1. Физические поля и излучения функционирующего организма человека
- •Рис. 15.1. Схема физических полей в организме человека
- •15.1.1. Электромагнитные поля и излучения живого организма
- •Рис. 15.2. Распределение вокруг человека электрического поля, образующегося в результате биоэлектрической активности его сердца.
- •15.1.2. Тепловое и другие виды излучений
- •15.2. Механизм взаимодействия излучений человека с окружающей средой
- •15.2.1. Электромагнитное и ионизирующее излучения
- •15.2.2. Возможности медицинской диагностики и лечения на основе излучений из организма человека
- •15.3. Устройство памяти. Воспроизводство и передача информации в организме
- •15.3.1. Физические процессы передачи информационного сигнала в живом организме
- •Рис. 15.3. Строение нейрона.
- •Рис. 15.4. Электрический потенциал действия нервного импульса.
- •15.3.2. Физическая основа памяти
- •15.3.3. Человеческий мозг и компьютер
- •КОНТРОЛЬНЫЕ ВОПРОСЫ
- •ЛИТЕРАТУРА
- •Глава 16ю ФИЗИЧЕСКИЕ АСПЕКТЫ БИОСФЕРЫ И ОСНОВЫ ЭКОЛОГИИ
- •16.1. Структурная организованность биосферы
- •16.1.1. Биоценозы
- •16.1.2. Геоценозы и биогеоценозы. Экосистемы
- •16.1.3. Понятие биосферы
- •16.1.4. Биологический круговорот веществ в природе
- •16.1.5. Роль энергии в эволюции
- •Рис. 16.1. Распределение солнечной энергии, поступающей на Землю.
- •16.2. Биогеохимические принципы В.И. Вернадского и живое вещество
- •16.2.1. Живое вещество
- •16.2.2. Биогеохимические принципы В.И. Вернадского
- •16.3. Физические представления эволюции биосферы и переход к ноосфере
- •16.3.1. Основные этапы эволюции биосферы
- •16.3.2. Ноосфера
- •16.3.3. Преобразование биосферы в ноосферу
- •16.4. Физические факторы влияния Космоса на земные процессы
- •Рис. 16.2. Общая схема солнечно-земных связей.
- •Рис. 16.3. Взаимодействие заряженных частиц от Солнца с магнитным полем Земли.
- •16.4.1. Связь Космоса с Землей по концепции А.Л. Чижевского
- •Александр Леонидович Чижевский
- •16.5. Физические основы экологии
- •16.5.1. Увеличение антропогенной нагрузки на окружающую среду
- •16.5.2. Физические принципы ухудшения экологии
- •16.6. Принципы устойчивого развития
- •16.6.1. Оценки устойчивости биосферы
- •16.6.2. Концепция устойчивого развития и необходимость экологического образования
- •КОНТРОЛЬНЫЕ ВОПРОСЫ
- •ЛИТЕРАТУРА
- •Глава 17. ФИЗИЧЕСКИЕ МОДЕЛИ САМООРГАНИЗАЦИИ В ЭКОНОМИКЕ
- •17.1. Экономическая модель длинных волн Н. Д. Кондратьева
- •17.2. Обратимость и необратимость процессов в экономике
- •17.3. Синергетические представления устойчивости в экономике
- •17.4. Физическое моделирование рынка
- •17.5. Циклический характер экономических процессов в модели Н.Д. Кондратьева
- •17.6. Модель колебательных процессов в экономике
- •КОНТРОЛЬНЫЕ ВОПРОСЫ
- •ЛИТЕРАТУРА
- •ЛИТЕРАТУРА
- •Основная
- •Дополнительная
- •ТЕМЫ КУРСОВЫХ РАБОТ, РЕФЕРАТОВ И ДОКЛАДОВ
- •ВОПРОСЫ К ЗАЧЕТУ И ЭКЗАМЕНУ
- •СЛОВАРЬ ТЕРМИНОВ
- •ЛИТЕРАТУРА
- •СОДЕРЖАНИЕ
Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru |
49 |
время, своего рода сцена, на которой разыгрываются физические процессы, как сказал Эйнштейн.
6.Галилеевская физика рассматривает мир как некий «объект», и все описание идет извне, «со стороны», т.е. наблюдатель не «принадлежит» объекту.
7.Теория Ньютона в принципе несовместима с теорией относительности (ОТО) Эйнштейна, так как согласно Ньютону тяготение передается мгновенно, а по Эйнштейну
—только со скоростью света с.
8.Главным же в ней является лапласовский детерминизм. Все причинно-следственные связи — однозначные. Наличие случайности обусловлено лишь невозможностью учесть все влияющие факторы, все детали сложного механизма природы.
72
КОНТРОЛЬНЫЕ ВОПРОСЫ
1.Чем, по Вашему мнению, обусловлена трехмерность реального пространства?
2.Каковы классические и современные представления о пространстве и времени?
3.Опишите представления о траектории и мировой линии.
4.Может ли классическая механика разрешить «путешествие» из будущего в прошлое? Почему?
5.В чем заключается парадокс времени?
6.Перечислите основные параметры движения в механике Галилея — Ньютона. Их физический смысл.
7.В чем заключается вклад Галилея и Ньютона в классическую механику?
8.Каковы особенности механики Ньютона?
9.Какие законы сохранения в классической механике Вы знаете?
10.В чем смысл лапласовского детерминизма?
11.Какие принципы оптимальности Вы знаете? В чем их вероятностный смысл?
12.Сформулируйте основные положения механической картины мира.
13.С какими свойствами пространства и времени связаны законы сохранения параметров движения?
14.Объясните, почему фигурист на льду начнет вращаться быстрее, если он поднимет руки вверх.
15.Дайте определение понятия «стрелы времени» и приведите его подтверждение в современном естествознании.
ЛИТЕРАТУРА
8, 18, 19, 26, 53, 57, 61, 70, 76, 89, 99, 106, 112, 115, 118, 141, 148.
Глава 3. ФИЗИКА ПОЛЕЙ
Природа проста и не роскошествует излишними причинами.
И. Ньютон
В физике все. что не запрещено, имеется.
Гелл-Манн
3.1. Определение понятия поля
Переходя к физическим основам концепции современного естествознания, заметим, что в физике существуют фундаментальные понятия. К ним относятся постоянно рассматриваемые в нашем курсе пространство, время и понятие «поле». В механике дискретных объектов, механике Галилея, Ньютона, Декарта, Лапласа, Лагранжа, Гамильтона и других представителей физического классицизма установлено, что силы взаимодействия между дискретными объектами вызывают изменение параметров их движения (скорость, импульс, момент импульса) и энергии.
73
И это было наглядно и понятно. Однако с изучением природы электричества и магнетизма возникло понимание, что взаимодействовать между собой электрические заряды могут и без непосредственного контакта. В этом случае мы как бы переходим от представления близкодействия к бесконтактному дальнодействию. Это и привело к понятию поля.
Физическим полем называют особую форму материи, связывающую частицы (объекты) вещества в единые системы и передающую с конечной скоростью действие одних частиц на другие.
Такие определения слишком общие и не всегда выражают глубинную и конкретнопрактическую сущность понятия. Физики с трудом отказывались от идеи физического контактного взаимодействия тел и для объяснения различных явлений вводили такие модели, как электрическая и магнитная «жидкости»; для механических колебаний частичек среды — модель эфира; использовали понятия оптических флюидов, теплорода,
Горбачев В. В. Концепции современного естествознания:—М.: ООО «Издательский дом «ОНИКС 21 век»: ООО «Издательство «Мир и Образование», 2003. — 592 с: ил.

Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru |
50 |
флогистона в тепловых явлениях, описывая их тоже с механической точки зрения; и даже биологи вводили «жизненную силу» для объяснения процессов в живых организмах. Все это были попытки описать передачу действия через материальную («механическую») среду.
Однако в работах Фарадея (экспериментально), Максвелла (теоретически) и многих других ученых было показано, что существуют электромагнитные поля (в том числе и в вакууме) и именно они передают электромагнитные колебания. Выяснилось, что и видимый свет представляет электромагнитные колебания в определенном диапазоне частот. Было установлено, что электромагнитные волны делятся на несколько видов в шкале колебаний:
радиоволны |
103 - 10-4 м |
световые волны |
10-4 - 10-9 м |
ИК |
5 • 10-4 - 8 • 10-7м |
видимый свет |
8 • 10-7 - 4 • 10-7 м |
УФ |
4 • 10-7 - 10-9 м |
рентгеновское излучение |
2 • 10-9 - 6 • 10-12 м |
γ-излучение |
< 6 • 10-12м |
Что же такое поле? Воспользуемся неким абстрактным представлением (такие же абстракции используются в построении физики микромира и физики Вселенной). Можно сказать, что поле описывается физической величиной, которая в разных точ-
74
ках пространства принимает различные значения. Например, температура — это величина, с помощью которой можно описать поле (в данном случае скалярное) как Т= Τ (х, у, z), или если оно меняется во времени, то Т= Τ (x, у, z, t). Могут быть поля давлений, в том числе и атмосферного воздуха, поле распределения людей на Земле или различных наций среди населения, распределения оружия на Земле, разных песен, животных, всего что угодно. Могут быть и векторные поля, как, например, поле скоростей текущей жидкости. Мы знаем, что скорость (х, у, z) есть вектор. Поэтому записываем скорость движения жидкости в любой точке пространства в момент t в виде
(х, у, z, t). Аналогично могут быть представлены и электромагнитные поля. В частности, электрическое поле — векторное, так как кулоновская сила между зарядами есть вектор, определяемый по формуле
где q — электрический заряд,— напряженность электрического поля.
Людям трудно было мысленно представить поведение полей, и оказалось, что надо просто рассматривать поле как математические функции координат и времени какого-то параметра, описывающего явление или эффект.
Можно предположить и наглядную простую модель векторного поля и дать его описание. Мысленную картину поля можно представить, начертив во многих точках пространства векторы, которые определяют какую-то характеристику процесса взаимодействия или движения (для потока жидкости — это вектор скорости; электрические явления можно модельно рассматривать как заряженную жидкость со своим вектором напряженности поля и т.д.). Заметим, что определение параметров движения через координаты и импульс в классической механике — это метод Лагранжа, а через векторы скоростей и потоки — это метод Эйлера. Например, модельным представлением электрического поля являются силовые линии (рис. 3.1). По густоте касательных к ним можно судить об интенсивности течения жидкости. Число линий на единицу площадки, распо-
Рис. 3.1. Модель силовых линий поля.
75
ложенной перпендикулярно к ним, будет пропорционально напряженности электрического поля Е. Хотя картина силовых линий, введенных в 1852 г. М. Фарадеем (1791—1867), очень наглядна, следует понимать, что это лишь условная картина, простая
Горбачев В. В. Концепции современного естествознания:—М.: ООО «Издательский дом «ОНИКС 21 век»: ООО «Издательство «Мир и Образование», 2003. — 592 с: ил.