Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КСЕ / Горбачев_КСЕ 2003.pdf
Скачиваний:
333
Добавлен:
13.02.2015
Размер:
8.23 Mб
Скачать

Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru

131

быть кооперативными, когерентными; 4) должен иметь место неравновесный термодинамический процесс, причем неравновесность — это такое состояние, когда приток энергии

214

извне не только «гасит» рост энтропии, но и заставляет энтропию уменьшаться. Явления, описываемые в рамках понятий бифуркации, самоорганизации и эволюции

структур, относятся не только к физике. Они присущи природе в целом и поэтому могут быть использованы во всех других науках, которые ее описывают: химии, биологии, геологии, географии, экологии. Это связано с тем, что методы анализа таких структур и применение математического аппарата те же самые, как и для нелинейных открытых физических систем. Большое сходство уравнений для описания этих явлений указывает на структурный изоморфизм процессов самоорганизации, изучаемых в естественных и гуманитарных науках.

Учитывая огромное количество реальных систем в природе и обществе, подчиняющихся законам синергетики, можно считать, что создание синергетической картины мира является по существу научной революцией, сравнимой по своим масштабам с открытием строения атома, созданием генетики и кибернетики. Синергетика убедительно показывает, что в самом фундаменте природы, как неживой, так и живой, заложен принцип «инь» — «янь». Это — принцип развертывания и свертывания, эволюции и инволюции, развития и угасания, роста и вымирания, хаоса и порядка, устойчивости — неустойчивости.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1.Какой смысл имеет понятие «бифуркация»?

2.Объясните основные понятия синергетики.

3.Как происходят процессы в открытых системах?

4.Приведите примеры самоорганизации в неживой и живой природе.

5.Что такое диссипативные структуры?

6.Что такое аттракторы?

7.Как Вы представляете детерминированный или динамический хаос?

8.Какие два подхода известны для анализа сложных самоорганизующихся систем?

9.Как можно описать устойчивость—неустойчивость в самоорганизующихся системах?

10.Как Вы представляете возникновение порядка из хаоса?

11.В чем состоит принцип производства минимума энтропии?

12.Что можно сказать о золотом сечении и законах гармонии?

13.Что понимают под синергетической картиной мира?

14.Почему, на Ваш взгляд, невозможно дать долговременный прогноз погоды?

15.Как можно связать теорию катастроф с самоорганизацией сложных систем?

16.Что мы понимаем под устойчивым равновесием, неустойчивым?

ЛИТЕРАТУРА

4, 8, 13, 16, 21, 26, 30, 33, 34, 62, 63, 68, 88, 109, 110, 111, 123, 125, 149, 158.

215

Глава 8. СИММЕТРИЯ И АСИММЕТРИЯ В РАЗЛИЧНЫХ ФИЗИЧЕСКИХ ПРОЯВЛЕНИЯХ

Состояние равновесия должно быть, по-видимому, симметричным

Г:Вейль

Природа менее симметрична, чем можно было бы ожидать исходя из уравнений классической и квантовой физики.

И. Пригожин

Понятия симметрии и противоположного ей объективного свойства природы — асимметрии являются одними из фундаментальных в современном естествознании. Поэтому научные исследования общеглобального характера в значительной степени основываются на рассмотрении указанных понятий. Негласный лозунг физиковтеоретиков: «правильная теория должна быть красивой» — находит свое место в построении новых теоретических моделей и связан зачастую с симметрийными представлениями, а эстетический фактор играет при этом не последнее значение.

Симметрия является одним из фундаментальных свойств природы, представление о ней складывалось в течение жизни десятков сотен и тысяч поколений людей. Как говорил наш известный кристаллограф А. В. Шубников (1887—1970), посвятивший изучению симметрии всю свою жизнь, «изучение археологических памятников показывает, что

Горбачев В. В. Концепции современного естествознания:—М.: ООО «Издательский дом «ОНИКС 21 век»: ООО «Издательство «Мир и Образование», 2003. — 592 с: ил.

Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru

132

человечество на заре своей культуры уже имело представление о симметрии и осуществляло ее в рисунке и в предметах быта. Надо полагать, что применение симметрии в первобытном производстве определялось не только эстетическими мотивами, но в известной мере и уверенностью человека в большей пригодности для практики правильных форм». Быть прекрасным, говорил Платон, «значит быть симметричным и соразмерным».

Интуитивно симметрия в своих простых формах понятна любому человеку, и часто мы выделяем ее как элемент прекрасного и совершенного. В известной мере симметрия отражает степень упорядоченности системы. Например, окружность, ограничивающая каплю на плоскости, более упорядочена, чем размытое пятно на этой же площади, и, следовательно, более симметрична. Поэтому можно связать изменение энтропии как характеристики упорядочения с симметрией: чем более организовано вещество, тем выше симметрия и тем меньше энтропия.

216

Одно из определений понятий симметрии и асимметрии дал В. Готт: симметрия — понятие, отражающее существующий в природе порядок, пропорциональность и соразмерность между элементами какой-либо системы или объекта природы, упорядоченность, равновесие системы, устойчивость, т.е., если хотите, некий элемент гармонии. Другое определение дал Г. Вейль: «Симметричным является предмет, с

которым можно сделать нечто, не изменяя этого предмета». Асимметрия — понятие противоположное симметрии, отражающее разупорядочение системы, нарушение равновесия, что связано с изменением, развитием системы. Из соображений симметрииасимметрии приходят к выводу, что развивающаяся динамическая система должна быть неравновесной и несимметричной. В ряде случаев симметрия является достаточно очевидным фактом. Например, для определенных геометрических фигур не трудно увидеть эту симметрию и показать ее путем соответствующих преобразований, в результате которых фигура не изменит своего вида.

Симметрия проявляется не только в понимании геометрического строения тел в природе, но и в ряде областей человеческой деятельности. Симметрия существует в музыке, хореографии (например, в болеро Равеля многие народные песни и танцы построены симметрично), в зеркальной симметрии текста (любопытно, что при горизонтальной оси симметрии буквы зеркально отражаются и «читаются», а при вертикальной оси симметрии — нет), в начертании знаков языка (например, в китайской письменности имеется иероглиф, означающий истинную середину), архитектуре, живописи, математике, логике, строении живых организмов и растений и др. В. И.

Вернадский справедливо отмечал: «Новым в науке явилось не выявление принципа симметрии, а выявление его всеобщности».

Для живых организмов симметричное расположение частей органов тела помогает сохранять им равновесие при передвижении и функционировании, обеспечивает их жизнестойкость и лучшее приспособление к окружающему миру, что справедливо и в растительном мире. Например, ствол ели или сосны чаще всего прям и ветви равномерно расположены относительно ствола. Так дерево, развиваясь в условиях действия силы тяжести, достигает устойчивого положения. К вершине дерева ветви его становятся меньше в размерах — оно приобретает форму конуса, поскольку на нижние ветви, как и на верхние, должен падать свет. Кроме того, центр тяжести должен быть как можно ниже, от этого зависит устойчивость дерева.

217

Законы естественного отбора и всемирного тяготения способствовали тому, что дерево не только эстетически красиво, но устроено целесообразно. Получается, что симметрия живых организмов связана с симметрией законов природы. На житейском уровне, когда мы видим проявление симметрии в живой и неживой природе, то невольно испытываем чувство удовлетворения тем всеобщим, как нам кажется, порядком, который царит в природе.

Однако понятие симметрии гораздо шире и ее можно понимать как неизменность (инвариантность) каких-либо свойств объекта по отношению к преобразованиям, операциям, выполняемым над этим объектом. Причем это может быть не только материальный объект, но и закон, математическая формула или уравнения, в том числе и нелинейные, которые (см. гл. 7) играют большую роль в самоорганизующихся процессах.

Дать более конкретное определение симметрии, чем у Готта, в общем случае затруднительно еще и потому, что она принимает свою форму в каждой сфере человеческой деятельности. В искусстве симметрия может проявиться в соразмерности и

Горбачев В. В. Концепции современного естествознания:—М.: ООО «Издательский дом «ОНИКС 21 век»: ООО «Издательство «Мир и Образование», 2003. — 592 с: ил.

Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru

133

взаимосвязанности, гармонизации отдельных частей в целом произведении. В математических построениях также имеют место симметричные многочлены, которые можно использовать для существенного упрощения решения алгебраических и дифференциальных уравнений. Особенно полезным оказалось использование симметрийных представлений в теории групп с введением инварианта, т.е. такого преобразования, когда соотношения между переменными не изменяются. Отражением связи пространства, симметрии и законов сохранения может служить мысль великого французского математика А.Пуанкаре: «Пространство это группа».

Наиболее наглядное и непосредственное применение идей симметрии имеет место в кристаллографии и физике твердого тела, изучающих физические свойства кристаллов в зависимости от их строения. Даже непосвященному человеку хорошо видна здесь ассоциация с неким совершенством, порядком и гармонией. Идеи симметрии являются для мира кристаллов естественной базой их физической сущности. Один из создателей современной физики твердого тела Дж. Займен вообще считал, что вся теория твердых тел основана на трансляционной симметрии. Здесь симметрия проявляется при совмещении геометрических тел, например правильных многогранников, при повороте их в

218

пространстве на определенные углы, а также при перемещениях в атомной решетке на определенные величины векторов трансляции, кратных периоду решетки:

где а — период решетки кристалла,— модуль волнового вектора, Ε — энергия кристаллической решетки.

8.1. Симметрия и законы сохранения

Более глубокое понимание и применение симметрии связано (см. гл. 2) с изучением и обоснованием законов сохранения, отражающих фундаментальные свойства пространства—времени. Напомним, что симметрия относительно произвольного сдвига во времени приводит к закону сохранения энергии для консервативных (замкнутых) систем:

Ε = const.

Неизменность характеристик физической системы при произвольном перемещении ее как целого в пространстве на произвольный вектор приводит к закону сохранения импульса р:

И наконец, симметрия относительно произвольных пространственных поворотов (изотропность пространства) связана с законом сохранения момента импульса:

Общие законы природы, характеризующие движение материи, связаны с симметрией пространства и времени. Время само по себе не способно изменить энергию какой-либо системы. Закон сохранения энергии есть следствие однородности времени. Закон сохранения импульса есть следствие однородности пространства.

Так как категория симметрии относится к любому объекту или понятию, то она в полной мере применима, например, к физическому закону. А поскольку цель физических законов — нахождение и вычисление идентичного в явлениях, то для инер-

219

циальных систем, согласно принципу относительности Галилея, эти физические законы будут во всех системах одинаковы. Следовательно, они инвариантны относительно описания явлений как в одной инерциальной системе, так и в другой и тем самым сохраняют симметрию. В 1918 г. были доказаны теоремы Э. Нетер, смысл одной из которых состоит в том, что различным видам симметрии физических законов соответствуют определенные законы сохранения. Эта связь является настолько всеобщей, что ее можно считать наиболее полным отображением понятия сохранения субстанций и законов, ее описывающих, в природе. Как сказал Р. Фейнман, «среди мудрейших и удивительных вещей в физике эта связь одна из самых красивых и удивительных».

Различие видов симметрии связано с разными способами пространственно-временного преобразования одной инерциальной системы в другую инерциальную систему.

Горбачев В. В. Концепции современного естествознания:—М.: ООО «Издательский дом «ОНИКС 21 век»: ООО «Издательство «Мир и Образование», 2003. — 592 с: ил.

Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru

134

Остановимся на этом несколько подробнее. Каждому такому пространственновременному преобразованию соответствует определенный вид симметрии. Так, перенос начала координат в произвольную точку пространства при неизменности физических свойств или их проявлении связан с симметрией таких преобразований (это как раз и есть трансляционная симметрия) и означает физическую эквивалентность всех точек пространства, т.е. его однородность.

Поворот координатных осей в пространстве связан с физической эквивалентностью разных направлений в пространстве и означает изотропность пространства. Симметрия относительно переноса во времени связана с физической эквивалентностью различных моментов времени, что должно также отражать идею независимости хода времени от его начала (время протекает одинаково). Поэтому однородность времени проявляется в его равномерном течении, а относительная скорость всех процессов, протекающих в природе, одинакова. Факт равномерности течения времени был установлен экспериментально с точностью до 10-14 с за период ~10 миллионов лет; например, спектральный состав излучения звезд, испущенного миллионы лет назад и воспринимаемого нами только сейчас, имеет одинаковый спектральный состав таких же атомов на Земле.

В классической релятивистской механике симметрия выражается в принципе относительности. Равномерное и прямолинейное движение материальной точки в инерциальной системе отсчета с произвольной скоростью, но меньшей, чем скорость све-

220

та, связано с симметрией и физической эквивалентностью такого движения и покоя (неразличимость параметров движения объекта в движущемся равномерно и прямолинейно поезде и поезде, стоящем неподвижно на путях). Как мы знаем, при скоростях V << с используют принцип относительности и преобразования Галилея, при V ≈ с (релятивистские скорости) — принцип относительности Эйнштейна и преобразования Лоренца. Такого рода симметрию (неразличимость покоя и равномерно-прямолинейного движения) можно условно определить как изотропию пространства—времени. Эти виды симметрии объединяются в СТО в единую симметрию четырехмерного пространства— времени.

8.2. Симметрия—асимметрия

Проблемы симметрии—асимметрии оказываются тесно связанными между собой глубже, чем это кажется, исходя из бинарной структуры этих понятий (да — нет). Примером может служить состояние человека во вращающейся центрифуге. Существует симметрия вращения (поворота), но относительность покоя и вращательного движения нарушается и человек в такой центрифуге по своему состоянию (вестибулярные ощущения) может отличить, что его вращающаяся закрытая (герметизированная) камера на центрифуге вращается. Таким образом, возникает ситуация, при которой физические законы не инвариантны относительно вращения, т.е. налицо асимметрия.

Асимметрия относительно масштабных преобразований при изменении масштабов физических систем связана с тем, что порядок размеров атомов имеет одинаковое для всей нашей Вселенной значение (~10-10 м). Если уменьшить масштабы размеров, например, изделий микроэлектроники, в том числе и пленочных, то характер поведения электронов в них изменится (возникнут размерные эффекты), т.е. опять-таки может появиться асимметричность процессов при таких размерах. Другой пример несимметрии относительно масштабов можно привести из биологии: несмотря на похожесть окраски, нельзя, например, раскормить осу до размеров тигра, так как при массе 10—100 кг она потеряет способность летать — возникнет другое качество.

Рассмотрим другие виды симметрии. Упомянутые выше пространственно-временные виды симметрии условно объединяет одно общее свойство: они являются как бы «внешними» симмет-

221

риями, так как отражают глубокие свойства структуры пространства—времени, представляющие собой форму существования любого вида материи, и поэтому справедливые для любых мыслимых взаимодействий и физических процессов. Весь физический опыт познания мира показывает отсутствие нарушений инвариантности законов природы относительно указанных пространственно-временных преобразований. В этом уже не только физический, но и философский смысл познания и установления объективности законов природы.

Горбачев В. В. Концепции современного естествознания:—М.: ООО «Издательский дом «ОНИКС 21 век»: ООО «Издательство «Мир и Образование», 2003. — 592 с: ил.

Соседние файлы в папке КСЕ