
- •Электронное оглавление
- •Капсулы (вставки)
- •ПРЕДИСЛОВИЕ
- •Часть I. ФИЗИЧЕСКИЕ ОСНОВЫ СТРОЕНИЯ МАТЕРИАЛЬНОГО МИРА
- •Глава 1. ОБЩИЕ ПРЕДСТАВЛЕНИЯ ОБ ЕСТЕСТВОЗНАНИИ
- •Владимир Иванович Вернадский
- •1.1. Этапы развития и становления естествознания
- •1.1.1. Программа Платона
- •1.1.2. Представления Аристотеля
- •1.1.3. Модель Демокрита
- •1.2. Проблемы естествознания на пути познания мира
- •1.2.1. Физический рационализм
- •1.2.2. Методы познания
- •Эрнест Резерфорд
- •1.2.3. Целостное восприятие мира
- •1.2.4. Физика и восточный мистицизм
- •1.2.5. Взаимосвязь естественных и гуманитарных наук
- •Вернер Гейзенберг
- •1.2.6. Синергетическая парадигма
- •1.2.7. Универсальный принцип естествознания — принцип дополнительности Бора
- •Нильс Бор
- •КОНТРОЛЬНЫЕ ВОПРОСЫ
- •ЛИТЕРАТУРА
- •Глава 2. МЕХАНИКА ДИСКРЕТНЫХ ОБЪЕКТОВ
- •2.1. Трехмерность пространства
- •2.2. Пространство и время
- •Исаак Ньютон
- •Рис. 2.1. Изображение мировой линии в пространственно-временной системе отсчета
- •2.3. Особенности механики Ньютона
- •2.4. Движение в механике
- •2.5. Законы Ньютона — Галилея
- •2.6. Законы сохранения
- •2.7. Принципы оптимальности
- •2.8. Механическая картина мира
- •КОНТРОЛЬНЫЕ ВОПРОСЫ
- •ЛИТЕРАТУРА
- •Глава 3. ФИЗИКА ПОЛЕЙ
- •3.1. Определение понятия поля
- •Рис. 3.1. Модель силовых линий поля.
- •3.2. Законы Фарадея — Максвелла для электромагнетизма
- •3.3. Электромагнитное поле
- •3.4. Гравитационное поле
- •3.5. Электромагнитная картина мира
- •КОНТРОЛЬНЫЕ ВОПРОСЫ
- •ЛИТЕРАТУРА
- •Глава 4. ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ ЭЙНШТЕЙНА — МОСТ МЕЖДУ МЕХАНИКОЙ И ЭЛЕКТРОМАГНЕТИЗМОМ
- •4.1. Физические начала специальной теории относительности (СТО)
- •А. Эйнштейн
- •4.1.1. Постулаты А. Эйнштейна в СТО
- •4.1.2. Принцип относительности Г. Галилея
- •Рис. 4.2. Преобразование Галилея х'= х— vt связывает положение тела Ρ в системах отсчета К и К'.
- •Рис. 4.3. Изменение электромагнитных сил в неподвижной К и подвижной К' системах отсчета.
- •4.1.3. Теория относительности и инвариантность времени
- •4.1.4. Постоянство скорости света
- •Рис. 4.5. «Поезд Эйнштейна»
- •4.1.5. Преобразования Г. Лоренца
- •4.1.6. Изменение длины и длительности времени в СТО
- •Рис. 4.6. Сокращение длины отрезка в направлении перемещения для системы, движущейся со скоростью ν ≈ с.
- •4.1.7. «Парадокс близнецов»
- •4.1.8. Изменение массы в СТО
- •4.2. Общая теория относительности (ОТО)
- •4.2.1. Постулаты ОТО
- •4.2.2. Экспериментальная проверка ОТО
- •Рис. 4.7. Отклонение световых лучей от звезды S при прохождении около Солнца от прямолинейной траектории.
- •4.2.3. Гравитация и искривление пространства
- •Рис. 4.8. Движение субъектов А и В с экватора точно на север по параллельным траекториям.
- •4.2.4. Основные итоги основ теории относительности
- •КОНТРОЛЬНЫЕ ВОПРОСЫ
- •ЛИТЕРАТУРА
- •Глава 5. ОСНОВЫ КВАНТОВОЙ МЕХАНИКИ И КВАНТОВОЙ ЭЛЕКТРОДИНАМИКИ
- •5.1. Описание процессов в микромире
- •Первое.
- •Второе.
- •5.2. Необходимость введения квантовой механики
- •Эрвин Шрёдингер
- •абсолютно черное тело
- •корпускулярно-волновой дуализм
- •Луи де Бройль
- •5.3. Гипотеза Планка
- •Макс Планк
- •5.4. Измерения в квантовой механике
- •5.5. Волновая функция и принцип неопределенности В. Гейзенберга
- •Вольфганг Паули
- •5.6. Квантовая механика и обратимость времени
- •5.7. Квантовая электродинамика
- •КОНТРОЛЬНЫЕ ВОПРОСЫ
- •ЛИТЕРАТУРА
- •Глава 6. ФИЗИКА ВСЕЛЕННОЙ
- •6.1. Космологическая модель А. Эйнштейна — A.A. Фридмана
- •6.2. Другие модели происхождения Вселенной
- •6.2.1. Модель Большого Взрыва
- •Георгий Антонович Гамов
- •6.2.2. Реликтовое излучение
- •6.2.3. Расширяется или сжимается Вселенная?
- •6.2.4. Сценарий развития Вселенной после Большого Взрыва
- •Рис. 6.1. Схема физической истории Вселенной.
- •6.2.5. Модель раздувающейся Вселенной
- •6.3. Современные представления об элементарных частицах как первооснове строения материи Вселенной
- •Поль Дирак
- •6.3.1. Классификация элементарных частиц
- •Рис. 6.2. Схема классификации элементарных частиц.
- •6.3.2. Кварковая модель
- •Таблица 6.1
- •Таблица 6.2
- •Таблица 6.3
- •6.4. Фундаментальные взаимодействия и мировые константы
- •6.4.1. Мировые константы
- •6.4.2. Фундаментальные взаимодействия и их роль в природе
- •6.4.3. Из чего же состоит вещество Вселенной?
- •Рис. 6.3. Возможные формы стабильной материи во Вселенной
- •6.4.4. Черные дыры
- •6.5. Модель единого физического поля и многомерность пространства—времени
- •6.5.1. Возможность многомерности пространства
- •Рис. 6.4. Модель трехмерного частотного пространства (ОД — оптический диапазон, видимая часть спектра, УФ — ультрафиолетовая, ИК — инфракрасная).
- •6.6. Устойчивость Вселенной и антропный принцип
- •6.6.1. Множественность миров
- •Рис. 6.5. Схематическое изображение областей, соответствующих устойчивым областям Вселенной.
- •6.6.2. Иерархичность структуры Вселенной
- •Рис. 6.6. Масштабы Вселенной
- •Рис. 6.7. Масштабы микромира
- •6.7. Антивещество во Вселенной и антигалактики
- •6.8. Механизм образования и эволюции звезд
- •Рис. 6.8. Схематическое изображение протон-протонной цепочки.
- •6.8.2. Углеродо-азотный цикл
- •6.8.3. Эволюция звезд
- •Рис. 6.10. Диаграмма эволюции звезд населения I.
- •6.8.4. Пульсары
- •Рис. 6.11. Модель пульсара, предложенная Голдом.
- •6.8.5. Квазары
- •КОНТРОЛЬНЫЕ ВОПРОСЫ
- •ЛИТЕРАТУРА
- •Глава 7. ПРОБЛЕМА «ПОРЯДОК—БЕСПОРЯДОК» В ПРИРОДЕ И ОБЩЕСТВЕ. СИНЕРГЕТИЧЕСКИЕ ПРЕДСТАВЛЕНИЯ
- •7.1. Неравновесная термодинамика и синергетика
- •7.2. Динамика хаоса и порядка
- •7.3. Модель Э. Лоренца
- •7.4. Диссипативные структуры
- •7.6. Реакции Белоусова — Жаботинского
- •7.7. Динамический хаос
- •7.8. Фазовое пространство
- •7.9. Аттракторы
- •Рис. 7.1. Изображение аттракторов на фазовых диаграммах.
- •Рис. 7.2. Бифуркационная диаграмма (А — характеристика системы, λ — управляющий параметр).
- •7.10. Режим с обострением
- •7.11. Модель Пуанкаре описания изменения состояния системы
- •7.12. Динамические неустойчивости
- •7.13. Изменение энергии при эволюции системы
- •7.14. Гармония хаоса и порядка и «золотое сечение»
- •Леонардо да Винчи
- •7.15. Открытые системы
- •7.16. Принцип производства минимума энтропии
- •КОНТРОЛЬНЫЕ ВОПРОСЫ
- •ЛИТЕРАТУРА
- •Глава 8. СИММЕТРИЯ И АСИММЕТРИЯ В РАЗЛИЧНЫХ ФИЗИЧЕСКИХ ПРОЯВЛЕНИЯХ
- •8.1. Симметрия и законы сохранения
- •8.2. Симметрия—асимметрия
- •8.3. Закон сохранения электрического заряда
- •8.4. Зеркальная симметрия
- •8.5. Другие виды симметрии
- •8.6. Хиральность живой и неживой природы
- •Рис. 8.1. Зеркальная симметрия молекул воды (а) и бутилового спирта (б).
- •8.7. Симметрия и энтропия
- •КОНТРОЛЬНЫЕ ВОПРОСЫ
- •ЛИТЕРАТУРА
- •Глава 9. СОВРЕМЕННАЯ ЕСТЕСТВЕННО-НАУЧНАЯ КАРТИНА МИРА С ПОЗИЦИИ ФИЗИКИ
- •9.1. Классификация механик
- •Рис. 9.1. Куб фундаментальных физических теорий.
- •9.2. Современная физическая картина мира
- •КОНТРОЛЬНЫЕ ВОПРОСЫ
- •ЛИТЕРАТУРА
- •Часть II. ФИЗИКА ЖИВОГО И ЭВОЛЮЦИЯ ПРИРОДЫ И ОБЩЕСТВА
- •Глава 10. ОБЩИЕ ПРОБЛЕМЫ ФИЗИКИ ЖИВОГО
- •Глава 11. ОТ ФИЗИКИ СУЩЕСТВУЮЩЕГО К ФИЗИКЕ ВОЗНИКАЮЩЕГО
- •11.1. Термодинамические особенности развития живых систем
- •11.1.1. Роль энтропии для живых организмов
- •11.1.2. Неустойчивость как фактор развития живого
- •11.2. Энергетический подход к описанию живого
- •11.2.1. Устойчивое неравновесие
- •11.3. Уровни организации живых систем и системный подход к эволюции живого
- •11.3.1. Иерархия уровней организации живого
- •11.3.2. Метод Фибоначчи как фактор гармонической самоорганизации
- •11.3.3. Физический и биологический методы изучения природы живого
- •11.3.4. Антропный принцип в физике живого
- •11.3.5. Физическая эволюция Л. Больцмана и биологическая эволюция Ч. Дарвина
- •11.4. Физическая интерпретация биологических законов
- •11.4.1. Физические модели в биологии
- •11.4.2. Физические факторы развития живого
- •11.5. Пространство и время для живых организмов
- •11.5.1. Связь пространства и энергии для живого
- •11.5.2. Биологическое время живой системы
- •11.5.3. Психологическое время живых организмов
- •11.6. Энтропия и информация в живых системах
- •11.6.1. Ценность информации
- •11.6.2. Кибернетический подход к описанию живого
- •11.6.3. Роль физических законов в понимании живого
- •КОНТРОЛЬНЫЕ ВОПРОСЫ
- •ЛИТЕРАТУРА:
- •Глава 12. ФИЗИЧЕСКИЕ АСПЕКТЫ И ПРИНЦИПЫ БИОЛОГИИ
- •12.1. От атомов к протожизни
- •12.1.1. Гипотезы происхождения жизни
- •12.1.2. Необходимые факторы возникновения жизни
- •12.1.3. Теория абиогенного происхождения жизни А.И. Опарина
- •12.1.4. Гетеротрофы и автотрофы
- •12.2. Химические процессы и молекулярная самоорганизация
- •12.2.1. Химические понятия и определения
- •Рис. 12.1. Схема изменения свободной энергии и химической связи в молекулах живых организмов.
- •12.2.2. Аминокислоты
- •12.2.3. Теория химической эволюции в биогенезе
- •12.2.4. Теория молекулярной самоорганизации М. Эйгена
- •12.2.5. Циклическая организация химических реакций и гиперциклы
- •12.3. Биохимические составляющие живого вещества
- •12.3.1. Молекулы живой природы
- •12.3.2. Мономеры и макромолекулы
- •12.3.3. Белки
- •Рис. 12.2. Структура белка-миоглобина.
- •Рис. 12.3. Структуры 20 аминокислот, встречающихся в белках.
- •12.3.4. Нуклеиновые кислоты
- •Рис. 12.4. Строение нуклеотида — мономера нуклеиновых кислот.
- •Рис. 12.5. Двойная спираль молекулы ДНК.
- •Рис. 12.6. Построение нуклеиновой кислоты из нуклеотидов.
- •12.3.5. Углеводы
- •Рис. 12.7. Структура АТФ.
- •Рис. 12.8. Схема получения свободной энергии с участием АТФ.
- •Рис. 12.9. Схема образования молекулы АТФ.
- •Рис. 12.10. Схема цикла Липмана по участию молекул фосфора в энергетических процессах живого организма.
- •12.3.6. Липиды
- •Рис. 12.11. Структура ненасыщенных (а) и насыщенных (б) жирных кислот.
- •Рис. 12.12. Растворение ионного конца жирной кислоты в воде.
- •Рис. 12.13. Растворение углеводородных цепей мыла в масле.
- •12.3.7. Роль воды для живых организмов
- •12.4. Клетка как элементарная частица молекулярной биологии
- •12.4.1. Строение клетки
- •Рис. 12.14. Строение клетки.
- •12.4.2. Процессы в клетке
- •12.4.3. Клеточные мембраны
- •12.4.4. Фотосинтез
- •12.4.5. Деление клеток и образование организма
- •Рис. 12.15. Клеточный цикл.
- •12.5. Роль асимметрии в возникновении живого
- •12.5.1. Оптическая активность вещества и хиральность
- •12.5.2. Гомохиральность и самоорганизация в живых организмах
- •КОНТРОЛЬНЫЕ ВОПРОСЫ
- •ЛИТЕРАТУРА
- •Глава 13. ФИЗИЧЕСКИЕ ПРИНЦИПЫ ВОСПРОИЗВОДСТВА И РАЗВИТИЯ ЖИВЫХ СИСТЕМ
- •13.1. Информационные молекулы наследственности
- •13.1.1. Генетический код
- •13.1.2. Гены и квантовый мир
- •Иерархия и сопоставление элементов в физическом и генетическом атомизме
- •13.2. Воспроизводство и наследование признаков
- •13.2.1. Генотип и фенотип
- •Геном
- •Генофонд
- •13.2.2. Законы генетики Г. Менделя
- •13.2.3. Хромосомная теория наследственности
- •13.3. Процессы мутагенеза и передача наследственной информации
- •13.3.1. Мутации и радиационный мутагенез
- •Николай Владимирович Тимофеев-Ресовский
- •13.3.2. Мутации и развитие организма
- •13.4. Матричный принцип синтеза информационных макромолекул и молекулярная генетика
- •13.4.1. Передача наследственной информации через репликации
- •Рис. 13.1. Репликация ДНК.
- •13.4.2. Матричный синтез путем конвариантной редупликации
- •13.4.3. Транскрипция
- •13.4.4. Трансляция
- •Рис. 13.2. Схема биосинтеза белков.
- •Рис. 13.3. Основные этапы процесса передачи генетической информации.
- •13.4.5. Отличия белков и нуклеиновых кислот
- •13.4.6. Новый механизм передачи наследственной информации и прионные болезни
- •КОНТРОЛЬНЫЕ ВОПРОСЫ
- •ЛИТЕРАТУРА
- •Глава 14. ФИЗИЧЕСКОЕ ПОНИМАНИЕ ЭВОЛЮЦИОННОГО И ИНДИВИДУАЛЬНОГО РАЗВИТИЯ ОРГАНИЗМОВ
- •14.1. Онтогенез и филогенез. Онтогенетический и популяционный уровни организации жизни
- •14.1.1. Закон Геккеля для онтогенеза и филогенеза
- •14.1.2. Онтогенетический уровень жизни
- •14.1.3. Популяции и популяционно-видовой уровень живого
- •14.2. Физическое представление эволюции
- •14.2.1. Синтетическая теория эволюции
- •14.2.2. Эволюция популяций
- •14.2.3. Элементарные факторы эволюции
- •14.2.4. Живой организм в индивидуальном и историческом развитии
- •14.2.5. Геологическая эволюция и общая схема эволюции Земли по H.H. Моисееву
- •14.3. Аксиомы биологии
- •14.3.1. Первая аксиома
- •14.3.2. Вторая аксиома
- •14.3.3. Третья аксиома
- •14.3.4. Четвертая аксиома
- •14.3.5. Физические представления аксиом биологии
- •14.4. Признаки живого и определения жизни
- •14.4.1. Совокупность признаков живого
- •14.4.2. Определения жизни
- •14.5. Физическая модель демографического развития СП. Капицы
- •КОНТРОЛЬНЫЕ ВОПРОСЫ
- •ЛИТЕРАТУРА
- •Глава 15. ФИЗИЧЕСКИЕ И ИНФОРМАЦИОННЫЕ ПОЛЯ БИОЛОГИЧЕСКИХ СТРУКТУР
- •15.1. Физические поля и излучения функционирующего организма человека
- •Рис. 15.1. Схема физических полей в организме человека
- •15.1.1. Электромагнитные поля и излучения живого организма
- •Рис. 15.2. Распределение вокруг человека электрического поля, образующегося в результате биоэлектрической активности его сердца.
- •15.1.2. Тепловое и другие виды излучений
- •15.2. Механизм взаимодействия излучений человека с окружающей средой
- •15.2.1. Электромагнитное и ионизирующее излучения
- •15.2.2. Возможности медицинской диагностики и лечения на основе излучений из организма человека
- •15.3. Устройство памяти. Воспроизводство и передача информации в организме
- •15.3.1. Физические процессы передачи информационного сигнала в живом организме
- •Рис. 15.3. Строение нейрона.
- •Рис. 15.4. Электрический потенциал действия нервного импульса.
- •15.3.2. Физическая основа памяти
- •15.3.3. Человеческий мозг и компьютер
- •КОНТРОЛЬНЫЕ ВОПРОСЫ
- •ЛИТЕРАТУРА
- •Глава 16ю ФИЗИЧЕСКИЕ АСПЕКТЫ БИОСФЕРЫ И ОСНОВЫ ЭКОЛОГИИ
- •16.1. Структурная организованность биосферы
- •16.1.1. Биоценозы
- •16.1.2. Геоценозы и биогеоценозы. Экосистемы
- •16.1.3. Понятие биосферы
- •16.1.4. Биологический круговорот веществ в природе
- •16.1.5. Роль энергии в эволюции
- •Рис. 16.1. Распределение солнечной энергии, поступающей на Землю.
- •16.2. Биогеохимические принципы В.И. Вернадского и живое вещество
- •16.2.1. Живое вещество
- •16.2.2. Биогеохимические принципы В.И. Вернадского
- •16.3. Физические представления эволюции биосферы и переход к ноосфере
- •16.3.1. Основные этапы эволюции биосферы
- •16.3.2. Ноосфера
- •16.3.3. Преобразование биосферы в ноосферу
- •16.4. Физические факторы влияния Космоса на земные процессы
- •Рис. 16.2. Общая схема солнечно-земных связей.
- •Рис. 16.3. Взаимодействие заряженных частиц от Солнца с магнитным полем Земли.
- •16.4.1. Связь Космоса с Землей по концепции А.Л. Чижевского
- •Александр Леонидович Чижевский
- •16.5. Физические основы экологии
- •16.5.1. Увеличение антропогенной нагрузки на окружающую среду
- •16.5.2. Физические принципы ухудшения экологии
- •16.6. Принципы устойчивого развития
- •16.6.1. Оценки устойчивости биосферы
- •16.6.2. Концепция устойчивого развития и необходимость экологического образования
- •КОНТРОЛЬНЫЕ ВОПРОСЫ
- •ЛИТЕРАТУРА
- •Глава 17. ФИЗИЧЕСКИЕ МОДЕЛИ САМООРГАНИЗАЦИИ В ЭКОНОМИКЕ
- •17.1. Экономическая модель длинных волн Н. Д. Кондратьева
- •17.2. Обратимость и необратимость процессов в экономике
- •17.3. Синергетические представления устойчивости в экономике
- •17.4. Физическое моделирование рынка
- •17.5. Циклический характер экономических процессов в модели Н.Д. Кондратьева
- •17.6. Модель колебательных процессов в экономике
- •КОНТРОЛЬНЫЕ ВОПРОСЫ
- •ЛИТЕРАТУРА
- •ЛИТЕРАТУРА
- •Основная
- •Дополнительная
- •ТЕМЫ КУРСОВЫХ РАБОТ, РЕФЕРАТОВ И ДОКЛАДОВ
- •ВОПРОСЫ К ЗАЧЕТУ И ЭКЗАМЕНУ
- •СЛОВАРЬ ТЕРМИНОВ
- •ЛИТЕРАТУРА
- •СОДЕРЖАНИЕ
Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru |
230 |
определенной территории, взаимодействуют между собой, скрещиваются, как говорят биологи, но относительно изолированы от других видов. Поскольку внутри популяции и вне ее происходят взаимодействия, то ее можно считать открытой системой. Зная механизмы поведения популя-
385
ции, можно выявить эволюцию живых систем. Целостность популяции как раз и обеспечивается взаимодействием особей в популяциях и воссозданием генетического материала через обмен в процессе полового размножения. Отметим, что достоинством полового размножения является повышение видового разнообразия, резкое увеличение темпов эволюции и приспособления к окружающей среде.
В этом смысле популяция представляет собой открытую генетическую систему, а отбор необходимых ценных признаков при взаимодействии друг с другом и окружающей средой обусловливает появление новых свойств и особенностей в популяции, отличных от свойств на клеточном молекулярно-генетическом и онтогенетическом уровнях. Действие элементарных эволюционных факторов приводит к изменению генетического фонда популяции, которое может характеризоваться как элементарное явление на данном уровне.
Можно считать, что популяция — это «разработанный» самой природой способ существования и выживания особей определенного типа. Функции популяции состоят в том, чтобы расти, развиваться и поддерживать в изменчивых условиях свое функционирование. Отдельные индивидуальные особи меняются, а сама популяция сохраняется. Ферхюльстом установлены некоторые закономерности развития популяций:
•биологический потенциал популяции зависит от скорости ее роста;
•биологический потенциал определяется отношением скорости роста к числовому значению популяции;
•сопротивление биологической среды росту популяции определяется отношением уменьшения популяции к квадрату численности популяции.
Таким образом, популяция выступает как самоорганизующаяся система, которая обладает способностью не только саморазвития, но и наследования. Виды могут рассматриваться как системы популяций (сами популяции выступают на популяционновидовом уровне в виде элементарных, далее неразложимых эволюционных единиц), в которых есть как внутрипопуляционный обмен и скрещивание особей, так и генетический обмен между популяциями.
386
14.2. Физическое представление эволюции
Стимулирующее действие хорошей гипотезы прямо пропорционально ее
необоснованности.
В. Я. Александров
Как жаль, что мы живем недостаточно долго, .чтобы пользоваться уроками своих ошибок
Ж. де Лабрюйер
14.2.1. Синтетическая теория эволюции
Раскрытие генетического кода и установление закономерностей молекулярной биологии показало необходимость соединения современной генетики и дарвиновской теории эволюции. Так родилась новая биологическая парадигма — синтетическая теория эволюции (СТЭ), которую можно рассматривать уже как неклассическую биологию. Хотя до настоящего времени не создана физическая модель эволюции в СТЭ, но так же, как в целом в физике живого (и как мы неоднократно это обсуждали), могут быть использованы синергетические идеи развития сложных самоорганизующихся систем и квантовые принципы. В частности, в активизации процессов самоорганизации и усложнении структуры живого организма состоит суть его эволюции. Причем эта самоорганизация в биологических объектах происходит с непревзойденными точностью, эффективностью и скоростью и тем самым является характеристикой эволюции живой природы.
Основные идеи эволюции Ч. Дарвина с его триадой — наследственностью, изменчивостью, естественным отбором — в современном понимании эволюции живого мира дополняются представлениями не просто естественного отбора, а такого отбора, который детерминирован генетически. Началом разработки синтетической, или общей,
Горбачев В. В. Концепции современного естествознания:—М.: ООО «Издательский дом «ОНИКС 21 век»: ООО «Издательство «Мир и Образование», 2003. — 592 с: ил.
Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru |
231 |
эволюции можно считать работы С.С. Четверикова по популяционной генетике, в которых было показано, что отбору подвергаются не отдельные признаки и особи, а генотип всей популяции, но осуществляется он через фенотипические признаки отдельных особей. Это приводит к распространению полезных изменений во всей популяции. Таким образом, механизм эволюции реализуется как через случайные мутации на генетическом уровне, так и через наследование наиболее ценных признаков (ценность информации!), определяющих адаптацию мутационных признаков к окружающей среде, обеспечивая наиболее жизнеспособное потомство.
387
Из-за вероятностного характера возникновения мутаций, подчиняющихся законам статистической физики, их нельзя считать основным фактором эволюции, так как они только влияют на изменчивость генотипа, и поэтому мутационный процесс приводит к образованию и полезных, и вредных генов, которые как бы составляют фонд наследственной изменчивости. Следовательно, изменчивость на молекулярногенетическом уровне также не является фактором эволюции и естественный отбор на этом уровне не работает. Полезность изменчивости будет определяться естественным отбором особей, наиболее приспособленных к жизни в конкретных условиях. Естественный отбор будет действовать непосредственно на фенотип живого организма и тем самым начнет проявляться уже на онтогенетическом уровне организации живого.
Как отмечал H.H. Моисеев [93], изменчивость создает поле возможностей развития той или иной живой системы, наследственность ограничивает это поле, но отбирает реализующий вариант эволюции по некоторым правилам или принципам. Принципы этого отбора — законы физики, биологии, общественного развития, с помощью которых с какой-то вероятностью из допустимых значений отбираются значения, наблюдаемые нами в реальности. К таким же правилам отбора относятся и те следствия человеческого опыта, на которые мы опираемся в своей практической деятельности, принимая те или иные решения. Заметим, что с физической точки зрения в основе этих принципов лежат законы сохранения, а сами фундаментальные принципы имеют запретительный характер: никакие изменения не могут идти вопреки закону изменения энергии и закону сохранения количества движения. Как отмечалось в первой части данного курса, законы различных механик (классической, квантовой и релятивистской) также имеют ограничительный характер и справедливы лишь для определенных условий.
14.2.2.Эволюция популяций
Врамках СТЭ и в целом эволюции всей биосферы элементарной единицей эволюции считается уже не особь, а совокупность особей одного вида, способных скрещиваться между собой, т.е. популяция. Мутировавший ген создает у особи новый признак. Если он полезен для популяции, он закрепляется в ней. Эффективность процесса будет определяться частотой возникновения в популяции признака и величиной ε, которая в мо-
388
дельном представлении эволюции описывает состояния особей в популяции. В работах ЛА. Шелепина [31, 87] предложена модель эволюции популяции и проведен анализ состояний популяций в зависимости от конкретных условий.
Популяции рассматриваются как целое по отношению к ресурсам, хищникам для данной популяции и к внешним условиям, а сами особи выступают как своего рода неразличимые молекулы. При анализе распределения особей внутри популяции выделяются четыре основные стратегии адаптации:
первая реализуется в условиях достаточного ресурса и отсутствия хищников. Для нее характерны экспоненциальный рост численности, активность к расселению, высокая скорость метаболизма;
вторая осуществляется в условиях конкуренции, ограниченности территории и наличия хищников, при этом проявляются определенное самолимитирование и уменьшение прироста численности с увеличением популяции в условиях конкурентности, отбор особей по силовым, размерным, скоростным качествам и умеренный метаболизм;
третья проходит при ухудшающихся неблагоприятных условиях, недостатке ресурсов, прессинге хищников и приводит к существенным изменениям скорости метаболизма, запасанию корма, поиску убежища, спячке;
четвертая стадия идет при крайне неблагоприятных условиях, при этом возникают качественные изменения особей и популяции в целом, появляются мутанты и происходит
Горбачев В. В. Концепции современного естествознания:—М.: ООО «Издательский дом «ОНИКС 21 век»: ООО «Издательство «Мир и Образование», 2003. — 592 с: ил.
Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru |
232 |
переход в новую экологическую нишу.
В рамках популяции имеют место в той или иной степени все четыре стратегии ее развития. Переходы от одной стадии к другой идут в зависимости от внутренних и внешних условий.
Параметр ε как раз и характеризует состояние популяции в процессе ее эволюции. С ростом ε популяции проходят все четыре стратегии. При достижении некоторого критического значения ε0 происходят генетические преобразования. Измененные организмы уходят в новую экологическую нишу и закрепляются в ней — формируется новый вид. Поскольку процессы появления и закрепления признаков на разных стадиях носят случайный, статистический характер, состояние популяции может быть задано функцией распределения Ν (ε, r, t), где r — пространственная координата, t — текущее время. При изменении определяющих факторов эволюции в пространстве и времени на
389
каждой стадии развития, которая и выражается через введенный параметр ε, происходит общий процесс перераспределения особей в популяции по состояниям от комфортных условий до генетических преобразований в пределах 0 < ε < ε0.
Функция распределения особей в популяции может быть описана больцмановским
распределением по ε в рамках представлений молекулярной физики:
N = N0e-ε/T,
где Τ — некая «популяционная температура», также характеризующая энергетическое состояние популяций. При малых Τ популяция находится в комфортных условиях. С ростом T наступают мутагенные и соматические изменения у все возрастающего числа особей и численность популяции, достигнув насыщения, постепенно начинает уменьшаться. При достижении некоторого критического значения Ткр, когда резко возрастает вариабельность (число и подвижность приобретаемых изменений и признаков), популяция либо прекращает свое существование, либо, изменяясь, переходит
вновое состояние, новую экологическую нишу.
Вобщем случае изменение функции Ν (ε, r, t), характеризующей изменения в состоянии популяции, описывается так называемым уравнением Фоккера—Планка с учетом источников N, задающих процессы рождения и гибели особей. Таким образом, генетические преобразования и эволюция в целом происходят в значительной мере через изменение состояния популяции. При некоторых значениях ε в организмах создаются условия для мутаций. В этом смысле мутации определяются условиями существования популяций. Комплексный анализ такой взаимосвязи имеет большое значение при рассмотрении эволюции живого мира.
ВСТЭ существуют представления о микро- и макроэволюции. Микроэволюция связана с необратимыми преобразованиями генетико-экологической структуры популяции, которые могут привести к формированию нового вида. Макроэволюция изучает основные направления и закономерности развития жизни на Земле и происхождение человека как биологического вида, и таким образом осуществляется через процессы микроэволюции. В рамках системного подхода и ту, и другую можно описать через элементарные явления и ведущие факторы.
390
14.2.3. Элементарные факторы эволюции
Н.В. Тимофеев-Ресовский [136—138] сформулировал представления об элементарных явлениях и факторах эволюции в следующих основных положениях. В качестве элементарной эволюционной структуры выступает популяция. Изменение генотипического состава популяции наблюдается в виде элементарного эволюционного явления. Сам генофонд есть элементарный эволюционный материал. И наконец, существуют элементарные эволюционные факторы — мутационный процесс,
популяционные волны, изоляция, естественный отбор.
Мутационный процесс, как мы убедились, хотя и является, так сказать, поставщиком элементарного эволюционного материала, не оказывает направляющего воздействия на ход эволюционного процесса. Существенное влияние на эволюцию популяций оказывают популяционные волны, или «волны жизни», которые представляют собой количественные колебания в численности популяций под воздействием различных проявлений внешней среды — сезонных изменений климата, различных природных или техногенных катастроф и т.д. С одной стороны, это приводит к изменению частоты повторяемости генов в популяциях и как следствие — к снижению наследственной
Горбачев В. В. Концепции современного естествознания:—М.: ООО «Издательский дом «ОНИКС 21 век»: ООО «Издательство «Мир и Образование», 2003. — 592 с: ил.
Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru |
233 |
изменчивости. Этот процесс иногда называют дрейфом генов. С другой стороны — к изменениям концентрации различных мутаций и уменьшению разнообразия генотипов, содержащихся в популяции, что может вызвать изменения направленности и интенсивности действия отбора. В этом смысле популяционные волны не дают вполне определенного хода эволюции.
Третий фактор эволюции — изоляция — нарушает свободное скрещивание и закрепляет как случайно возникшие, так и возникшие под действием отбора изменения в наборах признаков и численности генотипов в различных частях популяции. Изоляция может возникать по пространственно-географическому и биологическому (репродуктивному) признакам. Существует пять форм различия: биологическая изоляция по поведению особей (этологическая), по предпочтению разных мест обитания (экологическая), по сезонности в сроках размножения (сезонная), по размерам и структуре тела (морфологическая) и по различию наследственного аппарата, связанного с несовместимостью половых клеток (генетическая). Общим итогом изоляции может быть возникновение независимых генофондов двух популяций,
391
которые могут впоследствии развиться в независимые виды. Направленной эволюции этот фактор также не обеспечивает.
Естественный отбор, четвертый элементарный эволюционный фактор, проявляется в дифференцированном, направленном сохранении в популяции определенных генотипов и их избирательном участии в передаче следующему поколению. Как мы уже отмечали, этот процесс идет на уровне целого живого организма и закрепления признаков в особях и популяции. Таким образом, естественный отбор, являясь направленным фактором, определяет направление движения всей биосферы, ее развитие в процессе становления порядка из хаоса. Согласно И.И. Шмальгаузену [153], естественный отбор может реализовываться в движущей и стабилизирующей формах.
Движущий отбор в результате действия мутаций и окружающей среды для популяции производит закономерное изменение ее в определенном направлении, стабилизирующий отбор совершенствует индивидуальное развитие особей, не меняя признаков организмов. Это как бы защитный аппарат от возможных случайных нарушений во внутренней и внешней средах, и он связан с выработкой более устойчивых механизмов нормального формообразования. Во всех этих механизмах эволюции в организмах и их совокупностях
— популяциях — сохраняются основные законы жизни: развитие при сохранении устойчивости, стабильности различных форм жизни.
14.2.4. Живой организм в индивидуальном и историческом развитии
Организм, по выражению И.И. Шмальгаузена, предстает как целое в индивидуальном и историческом развитии. Устойчивость развития сложной живой системы определяется через ее гомеостаз. Сочетание эволюционных принципов оптимальности и термодинамических закономерностей, определяющих устойчивость неравновесных самоорганизующихся систем, позволяет построить количественную теорию гомеостаза живых организмов. Живой организм как единое целое сохраняет иерархическую общую структуру взаимодействия его элементов при изменении внешних условий и стабилизации внутреннего состояния посредством положительных и отрицательных обратных связей. Все это проявляется в огромном разнообразии признаков живого и выступает в качестве саморегуляции эволюции живого.
Подводя итог современных представлений синтетической теории эволюции, отметим некоторые эмпирические закономер-
392
ности развития биосистем. Установленный закон генетического разнообразия отражает тот факт, что живое генетически различно и имеет тенденцию к увеличению биологических разновидностей. С ростом сложности организации биосистем продолжительность существования вида уменьшается, а темпы эволюции возрастают. Любопытную закономерность установил также В.И. Вернадский: «...в ходе геологического времени выживающие формы увеличивают свои размеры, а следовательно, и вес, а затем вымирают» [4].
Эволюционные изменения случайны и ненаправленны, поскольку исходным материалом для них являются различные мутации. Эволюция протекает дивергентно, постепенно, через отбор мелких случайных мутаций. Новые формы могут
Горбачев В. В. Концепции современного естествознания:—М.: ООО «Издательский дом «ОНИКС 21 век»: ООО «Издательство «Мир и Образование», 2003. — 592 с: ил.