Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
нанотехн.учебник.doc
Скачиваний:
133
Добавлен:
31.08.2019
Размер:
14.02 Mб
Скачать

3.4 Поверхностные дефекты кристаллической решетки.

Поверхностные и объемные дефекты - сравнительно крупные дефекты, состоящие из большого числа атомов. В случае поверхностных дефектов область кристалла с сильно нарушенным периодическим расположением атомов имеет форму некоторой поверхности, толщина этой области в направлении нормали к поверхности составляет 1-2 межплоскостных расстояния.

Поверхность кристалла является самым очевидным примером поверх-ностного дефекта. Известно, что вблизи поверхности кристалла нарушается, в некоторой степени, периодическое расположение атомов. Из-за этого поверхностный слой находится в напряженном состоянии и обладает некоторой поверхностной энергией, подобно тому, как и поверхность жидкости, обладает энергией поверхностного натяжения. Стремление кристалла как любой системы иметь минимум энергии приводит к минимальной поверхности кристалла. Отчасти поэтому кристаллы имеют форму выпуклых многогранников.

Однако поверхностные дефекты встречаются и внутри кристалла. Это связано с тем, что большинство реальных кристаллов формируются одновременно из нескольких центров кристаллизации и поэтому состоят из зерен с близкой ориентацией кристаллических решеток. На границе раздела этих зерен неизбежно нарушается периодическое расположение атомов. Такие границы называют малоугловыми.

Существуют и другой тип границ - границы между кристаллическими зернами в поликристаллическом материале. В этом случае разориентировка кристаллических решеток соседних зерен бывает произвольной.

К поверхностным дефектам решетки относятся дефекты упаковки и границы зерен.

Для понимания природы появления дефектов упаковки обратимся к геометрии заполнения кристаллической решетки в плотноупакованных материалах.

Появление дефектов упаковки связано с движением частичных дислокаций. Как отмечалось выше, при появлении дислокаций кристал-лическая решетка искажается, и энергия системы возрастает на величину, пропорциональную квадрату вектора Бюргерса Е ~ |b|2. Поэтому дислокации могут расщепляться на две частичные дислокации, b → b/2 + b/2. Это ведет к снижению энергии упругих искажений решетки вокруг дислокаций:

|b/2|2 + |b/2|2  < |b|2 (3.4.1)

При движении обычной полной дислокации атомы последовательно становятся из одного равновесного положения в другое, а при движении частичной дислокации атомы переходят в новые положения, нетипичные для данной кристаллической решетки. В результате в материале появляется дефект упаковки.

При движении полной решеточной дислокации с вектором Бюргерса b атомы перемещаются из одних равновесных положений в другие (например, из положения В в положение В). При этом кристаллическая решетка вдали от дислокации остается правильной. При расщеплении полной дислокации на две частичные движение частичных дислокаций приводит к образованию дефекта упаковки. При этом энергия атомов, смещенных в положение С, повышается (рис. 3.4.1.)

В том случае, когда энергия дефекта упаковки велика, расщепление дислокации на частичные энергетически невыгодно, а в том случае, когда энергия дефекта упаковки мала, дислокации расщепляются на частичные, и между ними появляется дефект упаковки.

Д ругим видом поверхностных дефектов являются границы зерен. Они представляющие собой узкую переходную область между двумя кристал-лами, с разной ориентацией атомных плоскостей. Ширина границ зерен небольшая и составляет несколько межатомных расстояний. Поскольку на границах зерен атомы смещены из равновесного положения, то энергия границ зерен повышена.

Э нергия границ зерен существенно зависит от угла разориентации кристаллических решеток соседних зерен. При малых углах разориентации (до 5) энергия границ зерен практически пропорциональна углу разориен-тировки. Такие границы называют малоугловыми. Строение малоугловых границ можно представить как стенку или сетку решеточных дислокаций (рис. 3.4.2).

Увеличение плотности дислокаций в малоугловых границах ведет к увеличению угла разориентировки () на границе. Если расстояние между дислокациями d, тогда можно найти угол разориентировки по формуле

 = 2arctg(b/2d), или   b/d (рис.3.4.2)

Участки кристалла, разделенные малоугловыми границами, принято называть субзернами. Если граница субзерен представляет собой сетку краевых дислокаций, то такую границу называют границей наклона, а если граница субзерен является скоплением винтовых дислокаций, то субграницу называют границей кручения. В общем случае, субграница может содержать компоненты кручения и наклона.

При углах разориентировки, превышающих 5°, плотность дислокаций на границах зерен становится столь высокой, что ядра дислокаций сливаются, и дальнейшее описание границ при помощи решеточных дислокаций становится невозможным. Такие границы называют большеуг-ловыми границами. Участки материала, отделенные большеугловыми границами, называют зернами или кристаллитами. Тело, состоящее из множества кристаллитов, разделенных большеугловыми границами, является поликристаллом. Основная масса промышленных материалов является поликристаллическими.

Энергия большеугловых границ немонотонно зависит от угла разориентировки (рис. 3.4.3). При определенных углах разориентации соседних зерен энергия границ зерен резко снижается. Такие границы зерен называются специальными. Соответственно углы разориентации границ, при которых энергия границ минимальна, называют специальными углами.

П о современным представлениям, специальные границы соответст-вуют высокой плотности совпадающих узлов кристаллических решеток соседних атомов (рис. 3.4.4).

Специальные границы обозначают символом Σn, где n показывает, на сколько узлов решетки приходится совпадающий узел. Например, Σ7 означает, что каждый седьмой атом на границе зерен совпадает для кристаллических решеток обоих зерен. Границы зерен, углы разориентации которых отличаются от специальных, называют произвольными или случай-ными.

Поскольку на границах зерен атомы смещены из равновесных положений, энергия границ зерен повышена. В том случае, когда узлы кристаллической решетки одного зерна совпадают с узлами решетки другого зерна (случай специальной границы) энергия упругих искажений снижается.

П ри отклонении угла разориентации от специальных углов плотность совпадающих узлов падает, а энергия границы возрастает. При небольших отклонениях от специальных углов энергия границ зерен приблизительно линейно возрастает. Зернограничные дислокации не только эксперимен-тально обнаружены методом просвечивающей электронной микроскопии, но и позволяют объяснять поведение материалов при различных условиях.

Так, результаты последних исследований свидетельствуют о том, что решеточные дислокации, входя в границы зерен, разбиваются на несколько зернограничных дислокаций с малыми векторами Бюргерса. В свою очередь, несколько зернограничных дислокаций могут сливаться, образуя решеточ-ную дислокацию. Поэтому границы зерен являются источниками и стоками решеточных дислокаций. Поскольку границы зерен, как правило, извилистые, то движение зернограничных дислокаций путем скольжения невозможно. При переползании зернограничных дислокаций происходит поглощение или выделение вакансий.

При деформации материалов при низких температурах решеточные дислокации входят в границы зерен и расщепляются на зернограничные дислокации. Поскольку подвижность вакансий при низких температурах мала, то зернограничные дислокации не могут переползать в границах на значительные расстояния и скопления зернограничных дислокаций препятствуют вхождению в границы новых решеточных дислокаций. Иначе говоря, при низких температурах граница зерен являются, в основном, барьерами для решеточных дислокаций. Поэтому прочность материалов при низких температурах высока. При измельчении зерен количество препятствий для решеточных дислокаций увеличивается, и мелкозернистые материалы более прочны, чем крупнозернистые, при низких температурах.

При высоких температурах подвижность вакансий велика, и зернограничные дислокации, образующиеся при вхождении в границы зерен решеточных дислокаций, легко перемещаются вдоль границ зерен. Поэтому границы зерен в основном являются стоками для решеточных дислокаций. Следовательно, накопления решеточных дислокаций у границ зерен не происходит, и прочность материалов при высоких температурах снижается. Чем мельче зерна, тем больше суммарная протяженность границ зерен и меньше плотность решеточных дислокаций. Поэтому при высоких температурах мелкозернистые материалы имеют меньшую прочность, чем крупнозернистые.

Кроме того, измельчение зерен ведет к росту удельного электрического сопротивления металлических материалов и падению удельного электрического сопротивления диэлектриков и полупроводников.

Существуют несколько способов уменьшения отрицательного влияния рассмотренных выше поверхностных дефектов на механические и коррозионные свойства кристаллов.

     Первый, самый распространенный способ - это выдержка кристалла при температуре примерно в 2 раза меньшей температуры плавления. В процессе такой выдержки происходит миграция атомов, и напряжения вблизи границы частично уменьшаются, из-за чего и несколько затрудняется диффузия вдоль границ и улучшается коррозионная стойкость кристалла.

     Второй, менее распространенный и дорогостоящий способ - использование монокристаллических материалов с малыми углами разориентировки соседних зерен. Его применяют, в частности, при производстве лопаток газовых турбин. Монокристаллические лопатки, в которых сведена к минимуму межзеренная диффузия, служат дольше и при более высоких температурах, чем такие же лопатки из поликристаллических материалов.